/* fortran/dsygs2.f -- translated by f2c (version 20200916).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#ifdef __cplusplus
extern "C" {
#endif
#include "lmp_f2c.h"
/* Table of constant values */
static doublereal c_b6 = -1.;
static integer c__1 = 1;
static doublereal c_b27 = 1.;
/* > \brief \b DSYGS2 reduces a symmetric definite generalized eigenproblem to standard form, using the factor
ization results obtained from spotrf (unblocked algorithm). */
/* =========== DOCUMENTATION =========== */
/* Online html documentation available at */
/* http://www.netlib.org/lapack/explore-html/ */
/* > \htmlonly */
/* > Download DSYGS2 + dependencies */
/* > */
/* > [TGZ] */
/* > */
/* > [ZIP] */
/* > */
/* > [TXT] */
/* > \endhtmlonly */
/* Definition: */
/* =========== */
/* SUBROUTINE DSYGS2( ITYPE, UPLO, N, A, LDA, B, LDB, INFO ) */
/* .. Scalar Arguments .. */
/* CHARACTER UPLO */
/* INTEGER INFO, ITYPE, LDA, LDB, N */
/* .. */
/* .. Array Arguments .. */
/* DOUBLE PRECISION A( LDA, * ), B( LDB, * ) */
/* .. */
/* > \par Purpose: */
/* ============= */
/* > */
/* > \verbatim */
/* > */
/* > DSYGS2 reduces a real symmetric-definite generalized eigenproblem */
/* > to standard form. */
/* > */
/* > If ITYPE = 1, the problem is A*x = lambda*B*x, */
/* > and A is overwritten by inv(U**T)*A*inv(U) or inv(L)*A*inv(L**T) */
/* > */
/* > If ITYPE = 2 or 3, the problem is A*B*x = lambda*x or */
/* > B*A*x = lambda*x, and A is overwritten by U*A*U**T or L**T *A*L. */
/* > */
/* > B must have been previously factorized as U**T *U or L*L**T by DPOTRF. */
/* > \endverbatim */
/* Arguments: */
/* ========== */
/* > \param[in] ITYPE */
/* > \verbatim */
/* > ITYPE is INTEGER */
/* > = 1: compute inv(U**T)*A*inv(U) or inv(L)*A*inv(L**T); */
/* > = 2 or 3: compute U*A*U**T or L**T *A*L. */
/* > \endverbatim */
/* > */
/* > \param[in] UPLO */
/* > \verbatim */
/* > UPLO is CHARACTER*1 */
/* > Specifies whether the upper or lower triangular part of the */
/* > symmetric matrix A is stored, and how B has been factorized. */
/* > = 'U': Upper triangular */
/* > = 'L': Lower triangular */
/* > \endverbatim */
/* > */
/* > \param[in] N */
/* > \verbatim */
/* > N is INTEGER */
/* > The order of the matrices A and B. N >= 0. */
/* > \endverbatim */
/* > */
/* > \param[in,out] A */
/* > \verbatim */
/* > A is DOUBLE PRECISION array, dimension (LDA,N) */
/* > On entry, the symmetric matrix A. If UPLO = 'U', the leading */
/* > n by n upper triangular part of A contains the upper */
/* > triangular part of the matrix A, and the strictly lower */
/* > triangular part of A is not referenced. If UPLO = 'L', the */
/* > leading n by n lower triangular part of A contains the lower */
/* > triangular part of the matrix A, and the strictly upper */
/* > triangular part of A is not referenced. */
/* > */
/* > On exit, if INFO = 0, the transformed matrix, stored in the */
/* > same format as A. */
/* > \endverbatim */
/* > */
/* > \param[in] LDA */
/* > \verbatim */
/* > LDA is INTEGER */
/* > The leading dimension of the array A. LDA >= max(1,N). */
/* > \endverbatim */
/* > */
/* > \param[in] B */
/* > \verbatim */
/* > B is DOUBLE PRECISION array, dimension (LDB,N) */
/* > The triangular factor from the Cholesky factorization of B, */
/* > as returned by DPOTRF. */
/* > \endverbatim */
/* > */
/* > \param[in] LDB */
/* > \verbatim */
/* > LDB is INTEGER */
/* > The leading dimension of the array B. LDB >= max(1,N). */
/* > \endverbatim */
/* > */
/* > \param[out] INFO */
/* > \verbatim */
/* > INFO is INTEGER */
/* > = 0: successful exit. */
/* > < 0: if INFO = -i, the i-th argument had an illegal value. */
/* > \endverbatim */
/* Authors: */
/* ======== */
/* > \author Univ. of Tennessee */
/* > \author Univ. of California Berkeley */
/* > \author Univ. of Colorado Denver */
/* > \author NAG Ltd. */
/* > \ingroup doubleSYcomputational */
/* ===================================================================== */
/* Subroutine */ int dsygs2_(integer *itype, char *uplo, integer *n,
doublereal *a, integer *lda, doublereal *b, integer *ldb, integer *
info, ftnlen uplo_len)
{
/* System generated locals */
integer a_dim1, a_offset, b_dim1, b_offset, i__1, i__2;
doublereal d__1;
/* Local variables */
integer k;
doublereal ct, akk, bkk;
extern /* Subroutine */ int dsyr2_(char *, integer *, doublereal *,
doublereal *, integer *, doublereal *, integer *, doublereal *,
integer *, ftnlen), dscal_(integer *, doublereal *, doublereal *,
integer *);
extern logical lsame_(char *, char *, ftnlen, ftnlen);
extern /* Subroutine */ int daxpy_(integer *, doublereal *, doublereal *,
integer *, doublereal *, integer *);
logical upper;
extern /* Subroutine */ int dtrmv_(char *, char *, char *, integer *,
doublereal *, integer *, doublereal *, integer *, ftnlen, ftnlen,
ftnlen), dtrsv_(char *, char *, char *, integer *, doublereal *,
integer *, doublereal *, integer *, ftnlen, ftnlen, ftnlen),
xerbla_(char *, integer *, ftnlen);
/* -- LAPACK computational routine -- */
/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
/* .. Scalar Arguments .. */
/* .. */
/* .. Array Arguments .. */
/* .. */
/* ===================================================================== */
/* .. Parameters .. */
/* .. */
/* .. Local Scalars .. */
/* .. */
/* .. External Subroutines .. */
/* .. */
/* .. Intrinsic Functions .. */
/* .. */
/* .. External Functions .. */
/* .. */
/* .. Executable Statements .. */
/* Test the input parameters. */
/* Parameter adjustments */
a_dim1 = *lda;
a_offset = 1 + a_dim1;
a -= a_offset;
b_dim1 = *ldb;
b_offset = 1 + b_dim1;
b -= b_offset;
/* Function Body */
*info = 0;
upper = lsame_(uplo, (char *)"U", (ftnlen)1, (ftnlen)1);
if (*itype < 1 || *itype > 3) {
*info = -1;
} else if (! upper && ! lsame_(uplo, (char *)"L", (ftnlen)1, (ftnlen)1)) {
*info = -2;
} else if (*n < 0) {
*info = -3;
} else if (*lda < max(1,*n)) {
*info = -5;
} else if (*ldb < max(1,*n)) {
*info = -7;
}
if (*info != 0) {
i__1 = -(*info);
xerbla_((char *)"DSYGS2", &i__1, (ftnlen)6);
return 0;
}
if (*itype == 1) {
if (upper) {
/* Compute inv(U**T)*A*inv(U) */
i__1 = *n;
for (k = 1; k <= i__1; ++k) {
/* Update the upper triangle of A(k:n,k:n) */
akk = a[k + k * a_dim1];
bkk = b[k + k * b_dim1];
/* Computing 2nd power */
d__1 = bkk;
akk /= d__1 * d__1;
a[k + k * a_dim1] = akk;
if (k < *n) {
i__2 = *n - k;
d__1 = 1. / bkk;
dscal_(&i__2, &d__1, &a[k + (k + 1) * a_dim1], lda);
ct = akk * -.5;
i__2 = *n - k;
daxpy_(&i__2, &ct, &b[k + (k + 1) * b_dim1], ldb, &a[k + (
k + 1) * a_dim1], lda);
i__2 = *n - k;
dsyr2_(uplo, &i__2, &c_b6, &a[k + (k + 1) * a_dim1], lda,
&b[k + (k + 1) * b_dim1], ldb, &a[k + 1 + (k + 1)
* a_dim1], lda, (ftnlen)1);
i__2 = *n - k;
daxpy_(&i__2, &ct, &b[k + (k + 1) * b_dim1], ldb, &a[k + (
k + 1) * a_dim1], lda);
i__2 = *n - k;
dtrsv_(uplo, (char *)"Transpose", (char *)"Non-unit", &i__2, &b[k + 1 + (
k + 1) * b_dim1], ldb, &a[k + (k + 1) * a_dim1],
lda, (ftnlen)1, (ftnlen)9, (ftnlen)8);
}
/* L10: */
}
} else {
/* Compute inv(L)*A*inv(L**T) */
i__1 = *n;
for (k = 1; k <= i__1; ++k) {
/* Update the lower triangle of A(k:n,k:n) */
akk = a[k + k * a_dim1];
bkk = b[k + k * b_dim1];
/* Computing 2nd power */
d__1 = bkk;
akk /= d__1 * d__1;
a[k + k * a_dim1] = akk;
if (k < *n) {
i__2 = *n - k;
d__1 = 1. / bkk;
dscal_(&i__2, &d__1, &a[k + 1 + k * a_dim1], &c__1);
ct = akk * -.5;
i__2 = *n - k;
daxpy_(&i__2, &ct, &b[k + 1 + k * b_dim1], &c__1, &a[k +
1 + k * a_dim1], &c__1);
i__2 = *n - k;
dsyr2_(uplo, &i__2, &c_b6, &a[k + 1 + k * a_dim1], &c__1,
&b[k + 1 + k * b_dim1], &c__1, &a[k + 1 + (k + 1)
* a_dim1], lda, (ftnlen)1);
i__2 = *n - k;
daxpy_(&i__2, &ct, &b[k + 1 + k * b_dim1], &c__1, &a[k +
1 + k * a_dim1], &c__1);
i__2 = *n - k;
dtrsv_(uplo, (char *)"No transpose", (char *)"Non-unit", &i__2, &b[k + 1
+ (k + 1) * b_dim1], ldb, &a[k + 1 + k * a_dim1],
&c__1, (ftnlen)1, (ftnlen)12, (ftnlen)8);
}
/* L20: */
}
}
} else {
if (upper) {
/* Compute U*A*U**T */
i__1 = *n;
for (k = 1; k <= i__1; ++k) {
/* Update the upper triangle of A(1:k,1:k) */
akk = a[k + k * a_dim1];
bkk = b[k + k * b_dim1];
i__2 = k - 1;
dtrmv_(uplo, (char *)"No transpose", (char *)"Non-unit", &i__2, &b[b_offset],
ldb, &a[k * a_dim1 + 1], &c__1, (ftnlen)1, (ftnlen)12,
(ftnlen)8);
ct = akk * .5;
i__2 = k - 1;
daxpy_(&i__2, &ct, &b[k * b_dim1 + 1], &c__1, &a[k * a_dim1 +
1], &c__1);
i__2 = k - 1;
dsyr2_(uplo, &i__2, &c_b27, &a[k * a_dim1 + 1], &c__1, &b[k *
b_dim1 + 1], &c__1, &a[a_offset], lda, (ftnlen)1);
i__2 = k - 1;
daxpy_(&i__2, &ct, &b[k * b_dim1 + 1], &c__1, &a[k * a_dim1 +
1], &c__1);
i__2 = k - 1;
dscal_(&i__2, &bkk, &a[k * a_dim1 + 1], &c__1);
/* Computing 2nd power */
d__1 = bkk;
a[k + k * a_dim1] = akk * (d__1 * d__1);
/* L30: */
}
} else {
/* Compute L**T *A*L */
i__1 = *n;
for (k = 1; k <= i__1; ++k) {
/* Update the lower triangle of A(1:k,1:k) */
akk = a[k + k * a_dim1];
bkk = b[k + k * b_dim1];
i__2 = k - 1;
dtrmv_(uplo, (char *)"Transpose", (char *)"Non-unit", &i__2, &b[b_offset],
ldb, &a[k + a_dim1], lda, (ftnlen)1, (ftnlen)9, (
ftnlen)8);
ct = akk * .5;
i__2 = k - 1;
daxpy_(&i__2, &ct, &b[k + b_dim1], ldb, &a[k + a_dim1], lda);
i__2 = k - 1;
dsyr2_(uplo, &i__2, &c_b27, &a[k + a_dim1], lda, &b[k +
b_dim1], ldb, &a[a_offset], lda, (ftnlen)1);
i__2 = k - 1;
daxpy_(&i__2, &ct, &b[k + b_dim1], ldb, &a[k + a_dim1], lda);
i__2 = k - 1;
dscal_(&i__2, &bkk, &a[k + a_dim1], lda);
/* Computing 2nd power */
d__1 = bkk;
a[k + k * a_dim1] = akk * (d__1 * d__1);
/* L40: */
}
}
}
return 0;
/* End of DSYGS2 */
} /* dsygs2_ */
#ifdef __cplusplus
}
#endif