/* fortran/dsygs2.f -- translated by f2c (version 20200916). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #ifdef __cplusplus extern "C" { #endif #include "lmp_f2c.h" /* Table of constant values */ static doublereal c_b6 = -1.; static integer c__1 = 1; static doublereal c_b27 = 1.; /* > \brief \b DSYGS2 reduces a symmetric definite generalized eigenproblem to standard form, using the factor ization results obtained from spotrf (unblocked algorithm). */ /* =========== DOCUMENTATION =========== */ /* Online html documentation available at */ /* http://www.netlib.org/lapack/explore-html/ */ /* > \htmlonly */ /* > Download DSYGS2 + dependencies */ /* > */ /* > [TGZ] */ /* > */ /* > [ZIP] */ /* > */ /* > [TXT] */ /* > \endhtmlonly */ /* Definition: */ /* =========== */ /* SUBROUTINE DSYGS2( ITYPE, UPLO, N, A, LDA, B, LDB, INFO ) */ /* .. Scalar Arguments .. */ /* CHARACTER UPLO */ /* INTEGER INFO, ITYPE, LDA, LDB, N */ /* .. */ /* .. Array Arguments .. */ /* DOUBLE PRECISION A( LDA, * ), B( LDB, * ) */ /* .. */ /* > \par Purpose: */ /* ============= */ /* > */ /* > \verbatim */ /* > */ /* > DSYGS2 reduces a real symmetric-definite generalized eigenproblem */ /* > to standard form. */ /* > */ /* > If ITYPE = 1, the problem is A*x = lambda*B*x, */ /* > and A is overwritten by inv(U**T)*A*inv(U) or inv(L)*A*inv(L**T) */ /* > */ /* > If ITYPE = 2 or 3, the problem is A*B*x = lambda*x or */ /* > B*A*x = lambda*x, and A is overwritten by U*A*U**T or L**T *A*L. */ /* > */ /* > B must have been previously factorized as U**T *U or L*L**T by DPOTRF. */ /* > \endverbatim */ /* Arguments: */ /* ========== */ /* > \param[in] ITYPE */ /* > \verbatim */ /* > ITYPE is INTEGER */ /* > = 1: compute inv(U**T)*A*inv(U) or inv(L)*A*inv(L**T); */ /* > = 2 or 3: compute U*A*U**T or L**T *A*L. */ /* > \endverbatim */ /* > */ /* > \param[in] UPLO */ /* > \verbatim */ /* > UPLO is CHARACTER*1 */ /* > Specifies whether the upper or lower triangular part of the */ /* > symmetric matrix A is stored, and how B has been factorized. */ /* > = 'U': Upper triangular */ /* > = 'L': Lower triangular */ /* > \endverbatim */ /* > */ /* > \param[in] N */ /* > \verbatim */ /* > N is INTEGER */ /* > The order of the matrices A and B. N >= 0. */ /* > \endverbatim */ /* > */ /* > \param[in,out] A */ /* > \verbatim */ /* > A is DOUBLE PRECISION array, dimension (LDA,N) */ /* > On entry, the symmetric matrix A. If UPLO = 'U', the leading */ /* > n by n upper triangular part of A contains the upper */ /* > triangular part of the matrix A, and the strictly lower */ /* > triangular part of A is not referenced. If UPLO = 'L', the */ /* > leading n by n lower triangular part of A contains the lower */ /* > triangular part of the matrix A, and the strictly upper */ /* > triangular part of A is not referenced. */ /* > */ /* > On exit, if INFO = 0, the transformed matrix, stored in the */ /* > same format as A. */ /* > \endverbatim */ /* > */ /* > \param[in] LDA */ /* > \verbatim */ /* > LDA is INTEGER */ /* > The leading dimension of the array A. LDA >= max(1,N). */ /* > \endverbatim */ /* > */ /* > \param[in] B */ /* > \verbatim */ /* > B is DOUBLE PRECISION array, dimension (LDB,N) */ /* > The triangular factor from the Cholesky factorization of B, */ /* > as returned by DPOTRF. */ /* > \endverbatim */ /* > */ /* > \param[in] LDB */ /* > \verbatim */ /* > LDB is INTEGER */ /* > The leading dimension of the array B. LDB >= max(1,N). */ /* > \endverbatim */ /* > */ /* > \param[out] INFO */ /* > \verbatim */ /* > INFO is INTEGER */ /* > = 0: successful exit. */ /* > < 0: if INFO = -i, the i-th argument had an illegal value. */ /* > \endverbatim */ /* Authors: */ /* ======== */ /* > \author Univ. of Tennessee */ /* > \author Univ. of California Berkeley */ /* > \author Univ. of Colorado Denver */ /* > \author NAG Ltd. */ /* > \ingroup doubleSYcomputational */ /* ===================================================================== */ /* Subroutine */ int dsygs2_(integer *itype, char *uplo, integer *n, doublereal *a, integer *lda, doublereal *b, integer *ldb, integer * info, ftnlen uplo_len) { /* System generated locals */ integer a_dim1, a_offset, b_dim1, b_offset, i__1, i__2; doublereal d__1; /* Local variables */ integer k; doublereal ct, akk, bkk; extern /* Subroutine */ int dsyr2_(char *, integer *, doublereal *, doublereal *, integer *, doublereal *, integer *, doublereal *, integer *, ftnlen), dscal_(integer *, doublereal *, doublereal *, integer *); extern logical lsame_(char *, char *, ftnlen, ftnlen); extern /* Subroutine */ int daxpy_(integer *, doublereal *, doublereal *, integer *, doublereal *, integer *); logical upper; extern /* Subroutine */ int dtrmv_(char *, char *, char *, integer *, doublereal *, integer *, doublereal *, integer *, ftnlen, ftnlen, ftnlen), dtrsv_(char *, char *, char *, integer *, doublereal *, integer *, doublereal *, integer *, ftnlen, ftnlen, ftnlen), xerbla_(char *, integer *, ftnlen); /* -- LAPACK computational routine -- */ /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */ /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Test the input parameters. */ /* Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; b_dim1 = *ldb; b_offset = 1 + b_dim1; b -= b_offset; /* Function Body */ *info = 0; upper = lsame_(uplo, (char *)"U", (ftnlen)1, (ftnlen)1); if (*itype < 1 || *itype > 3) { *info = -1; } else if (! upper && ! lsame_(uplo, (char *)"L", (ftnlen)1, (ftnlen)1)) { *info = -2; } else if (*n < 0) { *info = -3; } else if (*lda < max(1,*n)) { *info = -5; } else if (*ldb < max(1,*n)) { *info = -7; } if (*info != 0) { i__1 = -(*info); xerbla_((char *)"DSYGS2", &i__1, (ftnlen)6); return 0; } if (*itype == 1) { if (upper) { /* Compute inv(U**T)*A*inv(U) */ i__1 = *n; for (k = 1; k <= i__1; ++k) { /* Update the upper triangle of A(k:n,k:n) */ akk = a[k + k * a_dim1]; bkk = b[k + k * b_dim1]; /* Computing 2nd power */ d__1 = bkk; akk /= d__1 * d__1; a[k + k * a_dim1] = akk; if (k < *n) { i__2 = *n - k; d__1 = 1. / bkk; dscal_(&i__2, &d__1, &a[k + (k + 1) * a_dim1], lda); ct = akk * -.5; i__2 = *n - k; daxpy_(&i__2, &ct, &b[k + (k + 1) * b_dim1], ldb, &a[k + ( k + 1) * a_dim1], lda); i__2 = *n - k; dsyr2_(uplo, &i__2, &c_b6, &a[k + (k + 1) * a_dim1], lda, &b[k + (k + 1) * b_dim1], ldb, &a[k + 1 + (k + 1) * a_dim1], lda, (ftnlen)1); i__2 = *n - k; daxpy_(&i__2, &ct, &b[k + (k + 1) * b_dim1], ldb, &a[k + ( k + 1) * a_dim1], lda); i__2 = *n - k; dtrsv_(uplo, (char *)"Transpose", (char *)"Non-unit", &i__2, &b[k + 1 + ( k + 1) * b_dim1], ldb, &a[k + (k + 1) * a_dim1], lda, (ftnlen)1, (ftnlen)9, (ftnlen)8); } /* L10: */ } } else { /* Compute inv(L)*A*inv(L**T) */ i__1 = *n; for (k = 1; k <= i__1; ++k) { /* Update the lower triangle of A(k:n,k:n) */ akk = a[k + k * a_dim1]; bkk = b[k + k * b_dim1]; /* Computing 2nd power */ d__1 = bkk; akk /= d__1 * d__1; a[k + k * a_dim1] = akk; if (k < *n) { i__2 = *n - k; d__1 = 1. / bkk; dscal_(&i__2, &d__1, &a[k + 1 + k * a_dim1], &c__1); ct = akk * -.5; i__2 = *n - k; daxpy_(&i__2, &ct, &b[k + 1 + k * b_dim1], &c__1, &a[k + 1 + k * a_dim1], &c__1); i__2 = *n - k; dsyr2_(uplo, &i__2, &c_b6, &a[k + 1 + k * a_dim1], &c__1, &b[k + 1 + k * b_dim1], &c__1, &a[k + 1 + (k + 1) * a_dim1], lda, (ftnlen)1); i__2 = *n - k; daxpy_(&i__2, &ct, &b[k + 1 + k * b_dim1], &c__1, &a[k + 1 + k * a_dim1], &c__1); i__2 = *n - k; dtrsv_(uplo, (char *)"No transpose", (char *)"Non-unit", &i__2, &b[k + 1 + (k + 1) * b_dim1], ldb, &a[k + 1 + k * a_dim1], &c__1, (ftnlen)1, (ftnlen)12, (ftnlen)8); } /* L20: */ } } } else { if (upper) { /* Compute U*A*U**T */ i__1 = *n; for (k = 1; k <= i__1; ++k) { /* Update the upper triangle of A(1:k,1:k) */ akk = a[k + k * a_dim1]; bkk = b[k + k * b_dim1]; i__2 = k - 1; dtrmv_(uplo, (char *)"No transpose", (char *)"Non-unit", &i__2, &b[b_offset], ldb, &a[k * a_dim1 + 1], &c__1, (ftnlen)1, (ftnlen)12, (ftnlen)8); ct = akk * .5; i__2 = k - 1; daxpy_(&i__2, &ct, &b[k * b_dim1 + 1], &c__1, &a[k * a_dim1 + 1], &c__1); i__2 = k - 1; dsyr2_(uplo, &i__2, &c_b27, &a[k * a_dim1 + 1], &c__1, &b[k * b_dim1 + 1], &c__1, &a[a_offset], lda, (ftnlen)1); i__2 = k - 1; daxpy_(&i__2, &ct, &b[k * b_dim1 + 1], &c__1, &a[k * a_dim1 + 1], &c__1); i__2 = k - 1; dscal_(&i__2, &bkk, &a[k * a_dim1 + 1], &c__1); /* Computing 2nd power */ d__1 = bkk; a[k + k * a_dim1] = akk * (d__1 * d__1); /* L30: */ } } else { /* Compute L**T *A*L */ i__1 = *n; for (k = 1; k <= i__1; ++k) { /* Update the lower triangle of A(1:k,1:k) */ akk = a[k + k * a_dim1]; bkk = b[k + k * b_dim1]; i__2 = k - 1; dtrmv_(uplo, (char *)"Transpose", (char *)"Non-unit", &i__2, &b[b_offset], ldb, &a[k + a_dim1], lda, (ftnlen)1, (ftnlen)9, ( ftnlen)8); ct = akk * .5; i__2 = k - 1; daxpy_(&i__2, &ct, &b[k + b_dim1], ldb, &a[k + a_dim1], lda); i__2 = k - 1; dsyr2_(uplo, &i__2, &c_b27, &a[k + a_dim1], lda, &b[k + b_dim1], ldb, &a[a_offset], lda, (ftnlen)1); i__2 = k - 1; daxpy_(&i__2, &ct, &b[k + b_dim1], ldb, &a[k + a_dim1], lda); i__2 = k - 1; dscal_(&i__2, &bkk, &a[k + a_dim1], lda); /* Computing 2nd power */ d__1 = bkk; a[k + k * a_dim1] = akk * (d__1 * d__1); /* L40: */ } } } return 0; /* End of DSYGS2 */ } /* dsygs2_ */ #ifdef __cplusplus } #endif