/* fortran/dsymm.f -- translated by f2c (version 20200916). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #ifdef __cplusplus extern "C" { #endif #include "lmp_f2c.h" /* > \brief \b DSYMM */ /* =========== DOCUMENTATION =========== */ /* Online html documentation available at */ /* http://www.netlib.org/lapack/explore-html/ */ /* Definition: */ /* =========== */ /* SUBROUTINE DSYMM(SIDE,UPLO,M,N,ALPHA,A,LDA,B,LDB,BETA,C,LDC) */ /* .. Scalar Arguments .. */ /* DOUBLE PRECISION ALPHA,BETA */ /* INTEGER LDA,LDB,LDC,M,N */ /* CHARACTER SIDE,UPLO */ /* .. */ /* .. Array Arguments .. */ /* DOUBLE PRECISION A(LDA,*),B(LDB,*),C(LDC,*) */ /* .. */ /* > \par Purpose: */ /* ============= */ /* > */ /* > \verbatim */ /* > */ /* > DSYMM performs one of the matrix-matrix operations */ /* > */ /* > C := alpha*A*B + beta*C, */ /* > */ /* > or */ /* > */ /* > C := alpha*B*A + beta*C, */ /* > */ /* > where alpha and beta are scalars, A is a symmetric matrix and B and */ /* > C are m by n matrices. */ /* > \endverbatim */ /* Arguments: */ /* ========== */ /* > \param[in] SIDE */ /* > \verbatim */ /* > SIDE is CHARACTER*1 */ /* > On entry, SIDE specifies whether the symmetric matrix A */ /* > appears on the left or right in the operation as follows: */ /* > */ /* > SIDE = 'L' or 'l' C := alpha*A*B + beta*C, */ /* > */ /* > SIDE = 'R' or 'r' C := alpha*B*A + beta*C, */ /* > \endverbatim */ /* > */ /* > \param[in] UPLO */ /* > \verbatim */ /* > UPLO is CHARACTER*1 */ /* > On entry, UPLO specifies whether the upper or lower */ /* > triangular part of the symmetric matrix A is to be */ /* > referenced as follows: */ /* > */ /* > UPLO = 'U' or 'u' Only the upper triangular part of the */ /* > symmetric matrix is to be referenced. */ /* > */ /* > UPLO = 'L' or 'l' Only the lower triangular part of the */ /* > symmetric matrix is to be referenced. */ /* > \endverbatim */ /* > */ /* > \param[in] M */ /* > \verbatim */ /* > M is INTEGER */ /* > On entry, M specifies the number of rows of the matrix C. */ /* > M must be at least zero. */ /* > \endverbatim */ /* > */ /* > \param[in] N */ /* > \verbatim */ /* > N is INTEGER */ /* > On entry, N specifies the number of columns of the matrix C. */ /* > N must be at least zero. */ /* > \endverbatim */ /* > */ /* > \param[in] ALPHA */ /* > \verbatim */ /* > ALPHA is DOUBLE PRECISION. */ /* > On entry, ALPHA specifies the scalar alpha. */ /* > \endverbatim */ /* > */ /* > \param[in] A */ /* > \verbatim */ /* > A is DOUBLE PRECISION array, dimension ( LDA, ka ), where ka is */ /* > m when SIDE = 'L' or 'l' and is n otherwise. */ /* > Before entry with SIDE = 'L' or 'l', the m by m part of */ /* > the array A must contain the symmetric matrix, such that */ /* > when UPLO = 'U' or 'u', the leading m by m upper triangular */ /* > part of the array A must contain the upper triangular part */ /* > of the symmetric matrix and the strictly lower triangular */ /* > part of A is not referenced, and when UPLO = 'L' or 'l', */ /* > the leading m by m lower triangular part of the array A */ /* > must contain the lower triangular part of the symmetric */ /* > matrix and the strictly upper triangular part of A is not */ /* > referenced. */ /* > Before entry with SIDE = 'R' or 'r', the n by n part of */ /* > the array A must contain the symmetric matrix, such that */ /* > when UPLO = 'U' or 'u', the leading n by n upper triangular */ /* > part of the array A must contain the upper triangular part */ /* > of the symmetric matrix and the strictly lower triangular */ /* > part of A is not referenced, and when UPLO = 'L' or 'l', */ /* > the leading n by n lower triangular part of the array A */ /* > must contain the lower triangular part of the symmetric */ /* > matrix and the strictly upper triangular part of A is not */ /* > referenced. */ /* > \endverbatim */ /* > */ /* > \param[in] LDA */ /* > \verbatim */ /* > LDA is INTEGER */ /* > On entry, LDA specifies the first dimension of A as declared */ /* > in the calling (sub) program. When SIDE = 'L' or 'l' then */ /* > LDA must be at least max( 1, m ), otherwise LDA must be at */ /* > least max( 1, n ). */ /* > \endverbatim */ /* > */ /* > \param[in] B */ /* > \verbatim */ /* > B is DOUBLE PRECISION array, dimension ( LDB, N ) */ /* > Before entry, the leading m by n part of the array B must */ /* > contain the matrix B. */ /* > \endverbatim */ /* > */ /* > \param[in] LDB */ /* > \verbatim */ /* > LDB is INTEGER */ /* > On entry, LDB specifies the first dimension of B as declared */ /* > in the calling (sub) program. LDB must be at least */ /* > max( 1, m ). */ /* > \endverbatim */ /* > */ /* > \param[in] BETA */ /* > \verbatim */ /* > BETA is DOUBLE PRECISION. */ /* > On entry, BETA specifies the scalar beta. When BETA is */ /* > supplied as zero then C need not be set on input. */ /* > \endverbatim */ /* > */ /* > \param[in,out] C */ /* > \verbatim */ /* > C is DOUBLE PRECISION array, dimension ( LDC, N ) */ /* > Before entry, the leading m by n part of the array C must */ /* > contain the matrix C, except when beta is zero, in which */ /* > case C need not be set on entry. */ /* > On exit, the array C is overwritten by the m by n updated */ /* > matrix. */ /* > \endverbatim */ /* > */ /* > \param[in] LDC */ /* > \verbatim */ /* > LDC is INTEGER */ /* > On entry, LDC specifies the first dimension of C as declared */ /* > in the calling (sub) program. LDC must be at least */ /* > max( 1, m ). */ /* > \endverbatim */ /* Authors: */ /* ======== */ /* > \author Univ. of Tennessee */ /* > \author Univ. of California Berkeley */ /* > \author Univ. of Colorado Denver */ /* > \author NAG Ltd. */ /* > \ingroup double_blas_level3 */ /* > \par Further Details: */ /* ===================== */ /* > */ /* > \verbatim */ /* > */ /* > Level 3 Blas routine. */ /* > */ /* > -- Written on 8-February-1989. */ /* > Jack Dongarra, Argonne National Laboratory. */ /* > Iain Duff, AERE Harwell. */ /* > Jeremy Du Croz, Numerical Algorithms Group Ltd. */ /* > Sven Hammarling, Numerical Algorithms Group Ltd. */ /* > \endverbatim */ /* > */ /* ===================================================================== */ /* Subroutine */ int dsymm_(char *side, char *uplo, integer *m, integer *n, doublereal *alpha, doublereal *a, integer *lda, doublereal *b, integer *ldb, doublereal *beta, doublereal *c__, integer *ldc, ftnlen side_len, ftnlen uplo_len) { /* System generated locals */ integer a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset, i__1, i__2, i__3; /* Local variables */ integer i__, j, k, info; doublereal temp1, temp2; extern logical lsame_(char *, char *, ftnlen, ftnlen); integer nrowa; logical upper; extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen); /* -- Reference BLAS level3 routine -- */ /* -- Reference BLAS is a software package provided by Univ. of Tennessee, -- */ /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* ===================================================================== */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. Parameters .. */ /* .. */ /* Set NROWA as the number of rows of A. */ /* Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; b_dim1 = *ldb; b_offset = 1 + b_dim1; b -= b_offset; c_dim1 = *ldc; c_offset = 1 + c_dim1; c__ -= c_offset; /* Function Body */ if (lsame_(side, (char *)"L", (ftnlen)1, (ftnlen)1)) { nrowa = *m; } else { nrowa = *n; } upper = lsame_(uplo, (char *)"U", (ftnlen)1, (ftnlen)1); /* Test the input parameters. */ info = 0; if (! lsame_(side, (char *)"L", (ftnlen)1, (ftnlen)1) && ! lsame_(side, (char *)"R", ( ftnlen)1, (ftnlen)1)) { info = 1; } else if (! upper && ! lsame_(uplo, (char *)"L", (ftnlen)1, (ftnlen)1)) { info = 2; } else if (*m < 0) { info = 3; } else if (*n < 0) { info = 4; } else if (*lda < max(1,nrowa)) { info = 7; } else if (*ldb < max(1,*m)) { info = 9; } else if (*ldc < max(1,*m)) { info = 12; } if (info != 0) { xerbla_((char *)"DSYMM ", &info, (ftnlen)6); return 0; } /* Quick return if possible. */ if (*m == 0 || *n == 0 || *alpha == 0. && *beta == 1.) { return 0; } /* And when alpha.eq.zero. */ if (*alpha == 0.) { if (*beta == 0.) { i__1 = *n; for (j = 1; j <= i__1; ++j) { i__2 = *m; for (i__ = 1; i__ <= i__2; ++i__) { c__[i__ + j * c_dim1] = 0.; /* L10: */ } /* L20: */ } } else { i__1 = *n; for (j = 1; j <= i__1; ++j) { i__2 = *m; for (i__ = 1; i__ <= i__2; ++i__) { c__[i__ + j * c_dim1] = *beta * c__[i__ + j * c_dim1]; /* L30: */ } /* L40: */ } } return 0; } /* Start the operations. */ if (lsame_(side, (char *)"L", (ftnlen)1, (ftnlen)1)) { /* Form C := alpha*A*B + beta*C. */ if (upper) { i__1 = *n; for (j = 1; j <= i__1; ++j) { i__2 = *m; for (i__ = 1; i__ <= i__2; ++i__) { temp1 = *alpha * b[i__ + j * b_dim1]; temp2 = 0.; i__3 = i__ - 1; for (k = 1; k <= i__3; ++k) { c__[k + j * c_dim1] += temp1 * a[k + i__ * a_dim1]; temp2 += b[k + j * b_dim1] * a[k + i__ * a_dim1]; /* L50: */ } if (*beta == 0.) { c__[i__ + j * c_dim1] = temp1 * a[i__ + i__ * a_dim1] + *alpha * temp2; } else { c__[i__ + j * c_dim1] = *beta * c__[i__ + j * c_dim1] + temp1 * a[i__ + i__ * a_dim1] + *alpha * temp2; } /* L60: */ } /* L70: */ } } else { i__1 = *n; for (j = 1; j <= i__1; ++j) { for (i__ = *m; i__ >= 1; --i__) { temp1 = *alpha * b[i__ + j * b_dim1]; temp2 = 0.; i__2 = *m; for (k = i__ + 1; k <= i__2; ++k) { c__[k + j * c_dim1] += temp1 * a[k + i__ * a_dim1]; temp2 += b[k + j * b_dim1] * a[k + i__ * a_dim1]; /* L80: */ } if (*beta == 0.) { c__[i__ + j * c_dim1] = temp1 * a[i__ + i__ * a_dim1] + *alpha * temp2; } else { c__[i__ + j * c_dim1] = *beta * c__[i__ + j * c_dim1] + temp1 * a[i__ + i__ * a_dim1] + *alpha * temp2; } /* L90: */ } /* L100: */ } } } else { /* Form C := alpha*B*A + beta*C. */ i__1 = *n; for (j = 1; j <= i__1; ++j) { temp1 = *alpha * a[j + j * a_dim1]; if (*beta == 0.) { i__2 = *m; for (i__ = 1; i__ <= i__2; ++i__) { c__[i__ + j * c_dim1] = temp1 * b[i__ + j * b_dim1]; /* L110: */ } } else { i__2 = *m; for (i__ = 1; i__ <= i__2; ++i__) { c__[i__ + j * c_dim1] = *beta * c__[i__ + j * c_dim1] + temp1 * b[i__ + j * b_dim1]; /* L120: */ } } i__2 = j - 1; for (k = 1; k <= i__2; ++k) { if (upper) { temp1 = *alpha * a[k + j * a_dim1]; } else { temp1 = *alpha * a[j + k * a_dim1]; } i__3 = *m; for (i__ = 1; i__ <= i__3; ++i__) { c__[i__ + j * c_dim1] += temp1 * b[i__ + k * b_dim1]; /* L130: */ } /* L140: */ } i__2 = *n; for (k = j + 1; k <= i__2; ++k) { if (upper) { temp1 = *alpha * a[j + k * a_dim1]; } else { temp1 = *alpha * a[k + j * a_dim1]; } i__3 = *m; for (i__ = 1; i__ <= i__3; ++i__) { c__[i__ + j * c_dim1] += temp1 * b[i__ + k * b_dim1]; /* L150: */ } /* L160: */ } /* L170: */ } } return 0; /* End of DSYMM */ } /* dsymm_ */ #ifdef __cplusplus } #endif