/* fortran/dtrsm.f -- translated by f2c (version 20200916). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #ifdef __cplusplus extern "C" { #endif #include "lmp_f2c.h" /* > \brief \b DTRSM */ /* =========== DOCUMENTATION =========== */ /* Online html documentation available at */ /* http://www.netlib.org/lapack/explore-html/ */ /* Definition: */ /* =========== */ /* SUBROUTINE DTRSM(SIDE,UPLO,TRANSA,DIAG,M,N,ALPHA,A,LDA,B,LDB) */ /* .. Scalar Arguments .. */ /* DOUBLE PRECISION ALPHA */ /* INTEGER LDA,LDB,M,N */ /* CHARACTER DIAG,SIDE,TRANSA,UPLO */ /* .. */ /* .. Array Arguments .. */ /* DOUBLE PRECISION A(LDA,*),B(LDB,*) */ /* .. */ /* > \par Purpose: */ /* ============= */ /* > */ /* > \verbatim */ /* > */ /* > DTRSM solves one of the matrix equations */ /* > */ /* > op( A )*X = alpha*B, or X*op( A ) = alpha*B, */ /* > */ /* > where alpha is a scalar, X and B are m by n matrices, A is a unit, or */ /* > non-unit, upper or lower triangular matrix and op( A ) is one of */ /* > */ /* > op( A ) = A or op( A ) = A**T. */ /* > */ /* > The matrix X is overwritten on B. */ /* > \endverbatim */ /* Arguments: */ /* ========== */ /* > \param[in] SIDE */ /* > \verbatim */ /* > SIDE is CHARACTER*1 */ /* > On entry, SIDE specifies whether op( A ) appears on the left */ /* > or right of X as follows: */ /* > */ /* > SIDE = 'L' or 'l' op( A )*X = alpha*B. */ /* > */ /* > SIDE = 'R' or 'r' X*op( A ) = alpha*B. */ /* > \endverbatim */ /* > */ /* > \param[in] UPLO */ /* > \verbatim */ /* > UPLO is CHARACTER*1 */ /* > On entry, UPLO specifies whether the matrix A is an upper or */ /* > lower triangular matrix as follows: */ /* > */ /* > UPLO = 'U' or 'u' A is an upper triangular matrix. */ /* > */ /* > UPLO = 'L' or 'l' A is a lower triangular matrix. */ /* > \endverbatim */ /* > */ /* > \param[in] TRANSA */ /* > \verbatim */ /* > TRANSA is CHARACTER*1 */ /* > On entry, TRANSA specifies the form of op( A ) to be used in */ /* > the matrix multiplication as follows: */ /* > */ /* > TRANSA = 'N' or 'n' op( A ) = A. */ /* > */ /* > TRANSA = 'T' or 't' op( A ) = A**T. */ /* > */ /* > TRANSA = 'C' or 'c' op( A ) = A**T. */ /* > \endverbatim */ /* > */ /* > \param[in] DIAG */ /* > \verbatim */ /* > DIAG is CHARACTER*1 */ /* > On entry, DIAG specifies whether or not A is unit triangular */ /* > as follows: */ /* > */ /* > DIAG = 'U' or 'u' A is assumed to be unit triangular. */ /* > */ /* > DIAG = 'N' or 'n' A is not assumed to be unit */ /* > triangular. */ /* > \endverbatim */ /* > */ /* > \param[in] M */ /* > \verbatim */ /* > M is INTEGER */ /* > On entry, M specifies the number of rows of B. M must be at */ /* > least zero. */ /* > \endverbatim */ /* > */ /* > \param[in] N */ /* > \verbatim */ /* > N is INTEGER */ /* > On entry, N specifies the number of columns of B. N must be */ /* > at least zero. */ /* > \endverbatim */ /* > */ /* > \param[in] ALPHA */ /* > \verbatim */ /* > ALPHA is DOUBLE PRECISION. */ /* > On entry, ALPHA specifies the scalar alpha. When alpha is */ /* > zero then A is not referenced and B need not be set before */ /* > entry. */ /* > \endverbatim */ /* > */ /* > \param[in] A */ /* > \verbatim */ /* > A is DOUBLE PRECISION array, dimension ( LDA, k ), */ /* > where k is m when SIDE = 'L' or 'l' */ /* > and k is n when SIDE = 'R' or 'r'. */ /* > Before entry with UPLO = 'U' or 'u', the leading k by k */ /* > upper triangular part of the array A must contain the upper */ /* > triangular matrix and the strictly lower triangular part of */ /* > A is not referenced. */ /* > Before entry with UPLO = 'L' or 'l', the leading k by k */ /* > lower triangular part of the array A must contain the lower */ /* > triangular matrix and the strictly upper triangular part of */ /* > A is not referenced. */ /* > Note that when DIAG = 'U' or 'u', the diagonal elements of */ /* > A are not referenced either, but are assumed to be unity. */ /* > \endverbatim */ /* > */ /* > \param[in] LDA */ /* > \verbatim */ /* > LDA is INTEGER */ /* > On entry, LDA specifies the first dimension of A as declared */ /* > in the calling (sub) program. When SIDE = 'L' or 'l' then */ /* > LDA must be at least max( 1, m ), when SIDE = 'R' or 'r' */ /* > then LDA must be at least max( 1, n ). */ /* > \endverbatim */ /* > */ /* > \param[in,out] B */ /* > \verbatim */ /* > B is DOUBLE PRECISION array, dimension ( LDB, N ) */ /* > Before entry, the leading m by n part of the array B must */ /* > contain the right-hand side matrix B, and on exit is */ /* > overwritten by the solution matrix X. */ /* > \endverbatim */ /* > */ /* > \param[in] LDB */ /* > \verbatim */ /* > LDB is INTEGER */ /* > On entry, LDB specifies the first dimension of B as declared */ /* > in the calling (sub) program. LDB must be at least */ /* > max( 1, m ). */ /* > \endverbatim */ /* Authors: */ /* ======== */ /* > \author Univ. of Tennessee */ /* > \author Univ. of California Berkeley */ /* > \author Univ. of Colorado Denver */ /* > \author NAG Ltd. */ /* > \ingroup double_blas_level3 */ /* > \par Further Details: */ /* ===================== */ /* > */ /* > \verbatim */ /* > */ /* > Level 3 Blas routine. */ /* > */ /* > */ /* > -- Written on 8-February-1989. */ /* > Jack Dongarra, Argonne National Laboratory. */ /* > Iain Duff, AERE Harwell. */ /* > Jeremy Du Croz, Numerical Algorithms Group Ltd. */ /* > Sven Hammarling, Numerical Algorithms Group Ltd. */ /* > \endverbatim */ /* > */ /* ===================================================================== */ /* Subroutine */ int dtrsm_(char *side, char *uplo, char *transa, char *diag, integer *m, integer *n, doublereal *alpha, doublereal *a, integer * lda, doublereal *b, integer *ldb, ftnlen side_len, ftnlen uplo_len, ftnlen transa_len, ftnlen diag_len) { /* System generated locals */ integer a_dim1, a_offset, b_dim1, b_offset, i__1, i__2, i__3; /* Local variables */ integer i__, j, k, info; doublereal temp; logical lside; extern logical lsame_(char *, char *, ftnlen, ftnlen); integer nrowa; logical upper; extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen); logical nounit; /* -- Reference BLAS level3 routine -- */ /* -- Reference BLAS is a software package provided by Univ. of Tennessee, -- */ /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* ===================================================================== */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. Parameters .. */ /* .. */ /* Test the input parameters. */ /* Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; b_dim1 = *ldb; b_offset = 1 + b_dim1; b -= b_offset; /* Function Body */ lside = lsame_(side, (char *)"L", (ftnlen)1, (ftnlen)1); if (lside) { nrowa = *m; } else { nrowa = *n; } nounit = lsame_(diag, (char *)"N", (ftnlen)1, (ftnlen)1); upper = lsame_(uplo, (char *)"U", (ftnlen)1, (ftnlen)1); info = 0; if (! lside && ! lsame_(side, (char *)"R", (ftnlen)1, (ftnlen)1)) { info = 1; } else if (! upper && ! lsame_(uplo, (char *)"L", (ftnlen)1, (ftnlen)1)) { info = 2; } else if (! lsame_(transa, (char *)"N", (ftnlen)1, (ftnlen)1) && ! lsame_(transa, (char *)"T", (ftnlen)1, (ftnlen)1) && ! lsame_(transa, (char *)"C", (ftnlen)1, ( ftnlen)1)) { info = 3; } else if (! lsame_(diag, (char *)"U", (ftnlen)1, (ftnlen)1) && ! lsame_(diag, (char *)"N", (ftnlen)1, (ftnlen)1)) { info = 4; } else if (*m < 0) { info = 5; } else if (*n < 0) { info = 6; } else if (*lda < max(1,nrowa)) { info = 9; } else if (*ldb < max(1,*m)) { info = 11; } if (info != 0) { xerbla_((char *)"DTRSM ", &info, (ftnlen)6); return 0; } /* Quick return if possible. */ if (*m == 0 || *n == 0) { return 0; } /* And when alpha.eq.zero. */ if (*alpha == 0.) { i__1 = *n; for (j = 1; j <= i__1; ++j) { i__2 = *m; for (i__ = 1; i__ <= i__2; ++i__) { b[i__ + j * b_dim1] = 0.; /* L10: */ } /* L20: */ } return 0; } /* Start the operations. */ if (lside) { if (lsame_(transa, (char *)"N", (ftnlen)1, (ftnlen)1)) { /* Form B := alpha*inv( A )*B. */ if (upper) { i__1 = *n; for (j = 1; j <= i__1; ++j) { if (*alpha != 1.) { i__2 = *m; for (i__ = 1; i__ <= i__2; ++i__) { b[i__ + j * b_dim1] = *alpha * b[i__ + j * b_dim1] ; /* L30: */ } } for (k = *m; k >= 1; --k) { if (b[k + j * b_dim1] != 0.) { if (nounit) { b[k + j * b_dim1] /= a[k + k * a_dim1]; } i__2 = k - 1; for (i__ = 1; i__ <= i__2; ++i__) { b[i__ + j * b_dim1] -= b[k + j * b_dim1] * a[ i__ + k * a_dim1]; /* L40: */ } } /* L50: */ } /* L60: */ } } else { i__1 = *n; for (j = 1; j <= i__1; ++j) { if (*alpha != 1.) { i__2 = *m; for (i__ = 1; i__ <= i__2; ++i__) { b[i__ + j * b_dim1] = *alpha * b[i__ + j * b_dim1] ; /* L70: */ } } i__2 = *m; for (k = 1; k <= i__2; ++k) { if (b[k + j * b_dim1] != 0.) { if (nounit) { b[k + j * b_dim1] /= a[k + k * a_dim1]; } i__3 = *m; for (i__ = k + 1; i__ <= i__3; ++i__) { b[i__ + j * b_dim1] -= b[k + j * b_dim1] * a[ i__ + k * a_dim1]; /* L80: */ } } /* L90: */ } /* L100: */ } } } else { /* Form B := alpha*inv( A**T )*B. */ if (upper) { i__1 = *n; for (j = 1; j <= i__1; ++j) { i__2 = *m; for (i__ = 1; i__ <= i__2; ++i__) { temp = *alpha * b[i__ + j * b_dim1]; i__3 = i__ - 1; for (k = 1; k <= i__3; ++k) { temp -= a[k + i__ * a_dim1] * b[k + j * b_dim1]; /* L110: */ } if (nounit) { temp /= a[i__ + i__ * a_dim1]; } b[i__ + j * b_dim1] = temp; /* L120: */ } /* L130: */ } } else { i__1 = *n; for (j = 1; j <= i__1; ++j) { for (i__ = *m; i__ >= 1; --i__) { temp = *alpha * b[i__ + j * b_dim1]; i__2 = *m; for (k = i__ + 1; k <= i__2; ++k) { temp -= a[k + i__ * a_dim1] * b[k + j * b_dim1]; /* L140: */ } if (nounit) { temp /= a[i__ + i__ * a_dim1]; } b[i__ + j * b_dim1] = temp; /* L150: */ } /* L160: */ } } } } else { if (lsame_(transa, (char *)"N", (ftnlen)1, (ftnlen)1)) { /* Form B := alpha*B*inv( A ). */ if (upper) { i__1 = *n; for (j = 1; j <= i__1; ++j) { if (*alpha != 1.) { i__2 = *m; for (i__ = 1; i__ <= i__2; ++i__) { b[i__ + j * b_dim1] = *alpha * b[i__ + j * b_dim1] ; /* L170: */ } } i__2 = j - 1; for (k = 1; k <= i__2; ++k) { if (a[k + j * a_dim1] != 0.) { i__3 = *m; for (i__ = 1; i__ <= i__3; ++i__) { b[i__ + j * b_dim1] -= a[k + j * a_dim1] * b[ i__ + k * b_dim1]; /* L180: */ } } /* L190: */ } if (nounit) { temp = 1. / a[j + j * a_dim1]; i__2 = *m; for (i__ = 1; i__ <= i__2; ++i__) { b[i__ + j * b_dim1] = temp * b[i__ + j * b_dim1]; /* L200: */ } } /* L210: */ } } else { for (j = *n; j >= 1; --j) { if (*alpha != 1.) { i__1 = *m; for (i__ = 1; i__ <= i__1; ++i__) { b[i__ + j * b_dim1] = *alpha * b[i__ + j * b_dim1] ; /* L220: */ } } i__1 = *n; for (k = j + 1; k <= i__1; ++k) { if (a[k + j * a_dim1] != 0.) { i__2 = *m; for (i__ = 1; i__ <= i__2; ++i__) { b[i__ + j * b_dim1] -= a[k + j * a_dim1] * b[ i__ + k * b_dim1]; /* L230: */ } } /* L240: */ } if (nounit) { temp = 1. / a[j + j * a_dim1]; i__1 = *m; for (i__ = 1; i__ <= i__1; ++i__) { b[i__ + j * b_dim1] = temp * b[i__ + j * b_dim1]; /* L250: */ } } /* L260: */ } } } else { /* Form B := alpha*B*inv( A**T ). */ if (upper) { for (k = *n; k >= 1; --k) { if (nounit) { temp = 1. / a[k + k * a_dim1]; i__1 = *m; for (i__ = 1; i__ <= i__1; ++i__) { b[i__ + k * b_dim1] = temp * b[i__ + k * b_dim1]; /* L270: */ } } i__1 = k - 1; for (j = 1; j <= i__1; ++j) { if (a[j + k * a_dim1] != 0.) { temp = a[j + k * a_dim1]; i__2 = *m; for (i__ = 1; i__ <= i__2; ++i__) { b[i__ + j * b_dim1] -= temp * b[i__ + k * b_dim1]; /* L280: */ } } /* L290: */ } if (*alpha != 1.) { i__1 = *m; for (i__ = 1; i__ <= i__1; ++i__) { b[i__ + k * b_dim1] = *alpha * b[i__ + k * b_dim1] ; /* L300: */ } } /* L310: */ } } else { i__1 = *n; for (k = 1; k <= i__1; ++k) { if (nounit) { temp = 1. / a[k + k * a_dim1]; i__2 = *m; for (i__ = 1; i__ <= i__2; ++i__) { b[i__ + k * b_dim1] = temp * b[i__ + k * b_dim1]; /* L320: */ } } i__2 = *n; for (j = k + 1; j <= i__2; ++j) { if (a[j + k * a_dim1] != 0.) { temp = a[j + k * a_dim1]; i__3 = *m; for (i__ = 1; i__ <= i__3; ++i__) { b[i__ + j * b_dim1] -= temp * b[i__ + k * b_dim1]; /* L330: */ } } /* L340: */ } if (*alpha != 1.) { i__2 = *m; for (i__ = 1; i__ <= i__2; ++i__) { b[i__ + k * b_dim1] = *alpha * b[i__ + k * b_dim1] ; /* L350: */ } } /* L360: */ } } } } return 0; /* End of DTRSM */ } /* dtrsm_ */ #ifdef __cplusplus } #endif