/* fortran/dtrsv.f -- translated by f2c (version 20200916). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #ifdef __cplusplus extern "C" { #endif #include "lmp_f2c.h" /* > \brief \b DTRSV */ /* =========== DOCUMENTATION =========== */ /* Online html documentation available at */ /* http://www.netlib.org/lapack/explore-html/ */ /* Definition: */ /* =========== */ /* SUBROUTINE DTRSV(UPLO,TRANS,DIAG,N,A,LDA,X,INCX) */ /* .. Scalar Arguments .. */ /* INTEGER INCX,LDA,N */ /* CHARACTER DIAG,TRANS,UPLO */ /* .. */ /* .. Array Arguments .. */ /* DOUBLE PRECISION A(LDA,*),X(*) */ /* .. */ /* > \par Purpose: */ /* ============= */ /* > */ /* > \verbatim */ /* > */ /* > DTRSV solves one of the systems of equations */ /* > */ /* > A*x = b, or A**T*x = b, */ /* > */ /* > where b and x are n element vectors and A is an n by n unit, or */ /* > non-unit, upper or lower triangular matrix. */ /* > */ /* > No test for singularity or near-singularity is included in this */ /* > routine. Such tests must be performed before calling this routine. */ /* > \endverbatim */ /* Arguments: */ /* ========== */ /* > \param[in] UPLO */ /* > \verbatim */ /* > UPLO is CHARACTER*1 */ /* > On entry, UPLO specifies whether the matrix is an upper or */ /* > lower triangular matrix as follows: */ /* > */ /* > UPLO = 'U' or 'u' A is an upper triangular matrix. */ /* > */ /* > UPLO = 'L' or 'l' A is a lower triangular matrix. */ /* > \endverbatim */ /* > */ /* > \param[in] TRANS */ /* > \verbatim */ /* > TRANS is CHARACTER*1 */ /* > On entry, TRANS specifies the equations to be solved as */ /* > follows: */ /* > */ /* > TRANS = 'N' or 'n' A*x = b. */ /* > */ /* > TRANS = 'T' or 't' A**T*x = b. */ /* > */ /* > TRANS = 'C' or 'c' A**T*x = b. */ /* > \endverbatim */ /* > */ /* > \param[in] DIAG */ /* > \verbatim */ /* > DIAG is CHARACTER*1 */ /* > On entry, DIAG specifies whether or not A is unit */ /* > triangular as follows: */ /* > */ /* > DIAG = 'U' or 'u' A is assumed to be unit triangular. */ /* > */ /* > DIAG = 'N' or 'n' A is not assumed to be unit */ /* > triangular. */ /* > \endverbatim */ /* > */ /* > \param[in] N */ /* > \verbatim */ /* > N is INTEGER */ /* > On entry, N specifies the order of the matrix A. */ /* > N must be at least zero. */ /* > \endverbatim */ /* > */ /* > \param[in] A */ /* > \verbatim */ /* > A is DOUBLE PRECISION array, dimension ( LDA, N ) */ /* > Before entry with UPLO = 'U' or 'u', the leading n by n */ /* > upper triangular part of the array A must contain the upper */ /* > triangular matrix and the strictly lower triangular part of */ /* > A is not referenced. */ /* > Before entry with UPLO = 'L' or 'l', the leading n by n */ /* > lower triangular part of the array A must contain the lower */ /* > triangular matrix and the strictly upper triangular part of */ /* > A is not referenced. */ /* > Note that when DIAG = 'U' or 'u', the diagonal elements of */ /* > A are not referenced either, but are assumed to be unity. */ /* > \endverbatim */ /* > */ /* > \param[in] LDA */ /* > \verbatim */ /* > LDA is INTEGER */ /* > On entry, LDA specifies the first dimension of A as declared */ /* > in the calling (sub) program. LDA must be at least */ /* > max( 1, n ). */ /* > \endverbatim */ /* > */ /* > \param[in,out] X */ /* > \verbatim */ /* > X is DOUBLE PRECISION array, dimension at least */ /* > ( 1 + ( n - 1 )*abs( INCX ) ). */ /* > Before entry, the incremented array X must contain the n */ /* > element right-hand side vector b. On exit, X is overwritten */ /* > with the solution vector x. */ /* > \endverbatim */ /* > */ /* > \param[in] INCX */ /* > \verbatim */ /* > INCX is INTEGER */ /* > On entry, INCX specifies the increment for the elements of */ /* > X. INCX must not be zero. */ /* > */ /* > Level 2 Blas routine. */ /* > */ /* > -- Written on 22-October-1986. */ /* > Jack Dongarra, Argonne National Lab. */ /* > Jeremy Du Croz, Nag Central Office. */ /* > Sven Hammarling, Nag Central Office. */ /* > Richard Hanson, Sandia National Labs. */ /* > \endverbatim */ /* Authors: */ /* ======== */ /* > \author Univ. of Tennessee */ /* > \author Univ. of California Berkeley */ /* > \author Univ. of Colorado Denver */ /* > \author NAG Ltd. */ /* > \ingroup double_blas_level1 */ /* ===================================================================== */ /* Subroutine */ int dtrsv_(char *uplo, char *trans, char *diag, integer *n, doublereal *a, integer *lda, doublereal *x, integer *incx, ftnlen uplo_len, ftnlen trans_len, ftnlen diag_len) { /* System generated locals */ integer a_dim1, a_offset, i__1, i__2; /* Local variables */ integer i__, j, ix, jx, kx, info; doublereal temp; extern logical lsame_(char *, char *, ftnlen, ftnlen); extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen); logical nounit; /* -- Reference BLAS level1 routine -- */ /* -- Reference BLAS is a software package provided by Univ. of Tennessee, -- */ /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* Test the input parameters. */ /* Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; --x; /* Function Body */ info = 0; if (! lsame_(uplo, (char *)"U", (ftnlen)1, (ftnlen)1) && ! lsame_(uplo, (char *)"L", ( ftnlen)1, (ftnlen)1)) { info = 1; } else if (! lsame_(trans, (char *)"N", (ftnlen)1, (ftnlen)1) && ! lsame_(trans, (char *)"T", (ftnlen)1, (ftnlen)1) && ! lsame_(trans, (char *)"C", (ftnlen)1, ( ftnlen)1)) { info = 2; } else if (! lsame_(diag, (char *)"U", (ftnlen)1, (ftnlen)1) && ! lsame_(diag, (char *)"N", (ftnlen)1, (ftnlen)1)) { info = 3; } else if (*n < 0) { info = 4; } else if (*lda < max(1,*n)) { info = 6; } else if (*incx == 0) { info = 8; } if (info != 0) { xerbla_((char *)"DTRSV ", &info, (ftnlen)6); return 0; } /* Quick return if possible. */ if (*n == 0) { return 0; } nounit = lsame_(diag, (char *)"N", (ftnlen)1, (ftnlen)1); /* Set up the start point in X if the increment is not unity. This */ /* will be ( N - 1 )*INCX too small for descending loops. */ if (*incx <= 0) { kx = 1 - (*n - 1) * *incx; } else if (*incx != 1) { kx = 1; } /* Start the operations. In this version the elements of A are */ /* accessed sequentially with one pass through A. */ if (lsame_(trans, (char *)"N", (ftnlen)1, (ftnlen)1)) { /* Form x := inv( A )*x. */ if (lsame_(uplo, (char *)"U", (ftnlen)1, (ftnlen)1)) { if (*incx == 1) { for (j = *n; j >= 1; --j) { if (x[j] != 0.) { if (nounit) { x[j] /= a[j + j * a_dim1]; } temp = x[j]; for (i__ = j - 1; i__ >= 1; --i__) { x[i__] -= temp * a[i__ + j * a_dim1]; /* L10: */ } } /* L20: */ } } else { jx = kx + (*n - 1) * *incx; for (j = *n; j >= 1; --j) { if (x[jx] != 0.) { if (nounit) { x[jx] /= a[j + j * a_dim1]; } temp = x[jx]; ix = jx; for (i__ = j - 1; i__ >= 1; --i__) { ix -= *incx; x[ix] -= temp * a[i__ + j * a_dim1]; /* L30: */ } } jx -= *incx; /* L40: */ } } } else { if (*incx == 1) { i__1 = *n; for (j = 1; j <= i__1; ++j) { if (x[j] != 0.) { if (nounit) { x[j] /= a[j + j * a_dim1]; } temp = x[j]; i__2 = *n; for (i__ = j + 1; i__ <= i__2; ++i__) { x[i__] -= temp * a[i__ + j * a_dim1]; /* L50: */ } } /* L60: */ } } else { jx = kx; i__1 = *n; for (j = 1; j <= i__1; ++j) { if (x[jx] != 0.) { if (nounit) { x[jx] /= a[j + j * a_dim1]; } temp = x[jx]; ix = jx; i__2 = *n; for (i__ = j + 1; i__ <= i__2; ++i__) { ix += *incx; x[ix] -= temp * a[i__ + j * a_dim1]; /* L70: */ } } jx += *incx; /* L80: */ } } } } else { /* Form x := inv( A**T )*x. */ if (lsame_(uplo, (char *)"U", (ftnlen)1, (ftnlen)1)) { if (*incx == 1) { i__1 = *n; for (j = 1; j <= i__1; ++j) { temp = x[j]; i__2 = j - 1; for (i__ = 1; i__ <= i__2; ++i__) { temp -= a[i__ + j * a_dim1] * x[i__]; /* L90: */ } if (nounit) { temp /= a[j + j * a_dim1]; } x[j] = temp; /* L100: */ } } else { jx = kx; i__1 = *n; for (j = 1; j <= i__1; ++j) { temp = x[jx]; ix = kx; i__2 = j - 1; for (i__ = 1; i__ <= i__2; ++i__) { temp -= a[i__ + j * a_dim1] * x[ix]; ix += *incx; /* L110: */ } if (nounit) { temp /= a[j + j * a_dim1]; } x[jx] = temp; jx += *incx; /* L120: */ } } } else { if (*incx == 1) { for (j = *n; j >= 1; --j) { temp = x[j]; i__1 = j + 1; for (i__ = *n; i__ >= i__1; --i__) { temp -= a[i__ + j * a_dim1] * x[i__]; /* L130: */ } if (nounit) { temp /= a[j + j * a_dim1]; } x[j] = temp; /* L140: */ } } else { kx += (*n - 1) * *incx; jx = kx; for (j = *n; j >= 1; --j) { temp = x[jx]; ix = kx; i__1 = j + 1; for (i__ = *n; i__ >= i__1; --i__) { temp -= a[i__ + j * a_dim1] * x[ix]; ix -= *incx; /* L150: */ } if (nounit) { temp /= a[j + j * a_dim1]; } x[jx] = temp; jx -= *incx; /* L160: */ } } } } return 0; /* End of DTRSV */ } /* dtrsv_ */ #ifdef __cplusplus } #endif