/* fortran/dznrm2.f -- translated by f2c (version 20200916). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #ifdef __cplusplus extern "C" { #endif #include "lmp_f2c.h" /* > \brief \b DZNRM2 */ /* =========== DOCUMENTATION =========== */ /* Online html documentation available at */ /* http://www.netlib.org/lapack/explore-html/ */ /* Definition: */ /* =========== */ /* DOUBLE PRECISION FUNCTION DZNRM2(N,X,INCX) */ /* .. Scalar Arguments .. */ /* INTEGER INCX,N */ /* .. */ /* .. Array Arguments .. */ /* COMPLEX*16 X(*) */ /* .. */ /* > \par Purpose: */ /* ============= */ /* > */ /* > \verbatim */ /* > */ /* > DZNRM2 returns the euclidean norm of a vector via the function */ /* > name, so that */ /* > */ /* > DZNRM2 := sqrt( x**H*x ) */ /* > \endverbatim */ /* Arguments: */ /* ========== */ /* > \param[in] N */ /* > \verbatim */ /* > N is INTEGER */ /* > number of elements in input vector(s) */ /* > \endverbatim */ /* > */ /* > \param[in] X */ /* > \verbatim */ /* > X is COMPLEX*16 array, dimension (N) */ /* > complex vector with N elements */ /* > \endverbatim */ /* > */ /* > \param[in] INCX */ /* > \verbatim */ /* > INCX is INTEGER */ /* > storage spacing between elements of X */ /* > \endverbatim */ /* Authors: */ /* ======== */ /* > \author Univ. of Tennessee */ /* > \author Univ. of California Berkeley */ /* > \author Univ. of Colorado Denver */ /* > \author NAG Ltd. */ /* > \date December 2016 */ /* > \ingroup double_blas_level1 */ /* > \par Further Details: */ /* ===================== */ /* > */ /* > \verbatim */ /* > */ /* > -- This version written on 25-October-1982. */ /* > Modified on 14-October-1993 to inline the call to ZLASSQ. */ /* > Sven Hammarling, Nag Ltd. */ /* > \endverbatim */ /* > */ /* ===================================================================== */ doublereal dznrm2_(integer *n, doublecomplex *x, integer *incx) { /* System generated locals */ integer i__1, i__2, i__3; doublereal ret_val, d__1; /* Builtin functions */ double d_imag(doublecomplex *), sqrt(doublereal); /* Local variables */ integer ix; doublereal ssq, temp, norm, scale; /* -- Reference BLAS level1 routine (version 3.7.0) -- */ /* -- Reference BLAS is a software package provided by Univ. of Tennessee, -- */ /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */ /* December 2016 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* Parameter adjustments */ --x; /* Function Body */ if (*n < 1 || *incx < 1) { norm = 0.; } else { scale = 0.; ssq = 1.; /* The following loop is equivalent to this call to the LAPACK */ /* auxiliary routine: */ /* CALL ZLASSQ( N, X, INCX, SCALE, SSQ ) */ i__1 = (*n - 1) * *incx + 1; i__2 = *incx; for (ix = 1; i__2 < 0 ? ix >= i__1 : ix <= i__1; ix += i__2) { i__3 = ix; if (x[i__3].r != 0.) { i__3 = ix; temp = (d__1 = x[i__3].r, abs(d__1)); if (scale < temp) { /* Computing 2nd power */ d__1 = scale / temp; ssq = ssq * (d__1 * d__1) + 1.; scale = temp; } else { /* Computing 2nd power */ d__1 = temp / scale; ssq += d__1 * d__1; } } if (d_imag(&x[ix]) != 0.) { temp = (d__1 = d_imag(&x[ix]), abs(d__1)); if (scale < temp) { /* Computing 2nd power */ d__1 = scale / temp; ssq = ssq * (d__1 * d__1) + 1.; scale = temp; } else { /* Computing 2nd power */ d__1 = temp / scale; ssq += d__1 * d__1; } } /* L10: */ } norm = scale * sqrt(ssq); } ret_val = norm; return ret_val; /* End of DZNRM2. */ } /* dznrm2_ */ #ifdef __cplusplus } #endif