/* fortran/zheev.f -- translated by f2c (version 20200916). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #ifdef __cplusplus extern "C" { #endif #include "lmp_f2c.h" /* Table of constant values */ static integer c__1 = 1; static integer c_n1 = -1; static integer c__0 = 0; static doublereal c_b18 = 1.; /* > \brief ZHEEV computes the eigenvalues and, optionally, the left and/or right eigenvectors for HE matr ices */ /* =========== DOCUMENTATION =========== */ /* Online html documentation available at */ /* http://www.netlib.org/lapack/explore-html/ */ /* > \htmlonly */ /* > Download ZHEEV + dependencies */ /* > */ /* > [TGZ] */ /* > */ /* > [ZIP] */ /* > */ /* > [TXT] */ /* > \endhtmlonly */ /* Definition: */ /* =========== */ /* SUBROUTINE ZHEEV( JOBZ, UPLO, N, A, LDA, W, WORK, LWORK, RWORK, */ /* INFO ) */ /* .. Scalar Arguments .. */ /* CHARACTER JOBZ, UPLO */ /* INTEGER INFO, LDA, LWORK, N */ /* .. */ /* .. Array Arguments .. */ /* DOUBLE PRECISION RWORK( * ), W( * ) */ /* COMPLEX*16 A( LDA, * ), WORK( * ) */ /* .. */ /* > \par Purpose: */ /* ============= */ /* > */ /* > \verbatim */ /* > */ /* > ZHEEV computes all eigenvalues and, optionally, eigenvectors of a */ /* > complex Hermitian matrix A. */ /* > \endverbatim */ /* Arguments: */ /* ========== */ /* > \param[in] JOBZ */ /* > \verbatim */ /* > JOBZ is CHARACTER*1 */ /* > = 'N': Compute eigenvalues only; */ /* > = 'V': Compute eigenvalues and eigenvectors. */ /* > \endverbatim */ /* > */ /* > \param[in] UPLO */ /* > \verbatim */ /* > UPLO is CHARACTER*1 */ /* > = 'U': Upper triangle of A is stored; */ /* > = 'L': Lower triangle of A is stored. */ /* > \endverbatim */ /* > */ /* > \param[in] N */ /* > \verbatim */ /* > N is INTEGER */ /* > The order of the matrix A. N >= 0. */ /* > \endverbatim */ /* > */ /* > \param[in,out] A */ /* > \verbatim */ /* > A is COMPLEX*16 array, dimension (LDA, N) */ /* > On entry, the Hermitian matrix A. If UPLO = 'U', the */ /* > leading N-by-N upper triangular part of A contains the */ /* > upper triangular part of the matrix A. If UPLO = 'L', */ /* > the leading N-by-N lower triangular part of A contains */ /* > the lower triangular part of the matrix A. */ /* > On exit, if JOBZ = 'V', then if INFO = 0, A contains the */ /* > orthonormal eigenvectors of the matrix A. */ /* > If JOBZ = 'N', then on exit the lower triangle (if UPLO='L') */ /* > or the upper triangle (if UPLO='U') of A, including the */ /* > diagonal, is destroyed. */ /* > \endverbatim */ /* > */ /* > \param[in] LDA */ /* > \verbatim */ /* > LDA is INTEGER */ /* > The leading dimension of the array A. LDA >= max(1,N). */ /* > \endverbatim */ /* > */ /* > \param[out] W */ /* > \verbatim */ /* > W is DOUBLE PRECISION array, dimension (N) */ /* > If INFO = 0, the eigenvalues in ascending order. */ /* > \endverbatim */ /* > */ /* > \param[out] WORK */ /* > \verbatim */ /* > WORK is COMPLEX*16 array, dimension (MAX(1,LWORK)) */ /* > On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */ /* > \endverbatim */ /* > */ /* > \param[in] LWORK */ /* > \verbatim */ /* > LWORK is INTEGER */ /* > The length of the array WORK. LWORK >= max(1,2*N-1). */ /* > For optimal efficiency, LWORK >= (NB+1)*N, */ /* > where NB is the blocksize for ZHETRD returned by ILAENV. */ /* > */ /* > If LWORK = -1, then a workspace query is assumed; the routine */ /* > only calculates the optimal size of the WORK array, returns */ /* > this value as the first entry of the WORK array, and no error */ /* > message related to LWORK is issued by XERBLA. */ /* > \endverbatim */ /* > */ /* > \param[out] RWORK */ /* > \verbatim */ /* > RWORK is DOUBLE PRECISION array, dimension (max(1, 3*N-2)) */ /* > \endverbatim */ /* > */ /* > \param[out] INFO */ /* > \verbatim */ /* > INFO is INTEGER */ /* > = 0: successful exit */ /* > < 0: if INFO = -i, the i-th argument had an illegal value */ /* > > 0: if INFO = i, the algorithm failed to converge; i */ /* > off-diagonal elements of an intermediate tridiagonal */ /* > form did not converge to zero. */ /* > \endverbatim */ /* Authors: */ /* ======== */ /* > \author Univ. of Tennessee */ /* > \author Univ. of California Berkeley */ /* > \author Univ. of Colorado Denver */ /* > \author NAG Ltd. */ /* > \ingroup complex16HEeigen */ /* ===================================================================== */ /* Subroutine */ int zheev_(char *jobz, char *uplo, integer *n, doublecomplex *a, integer *lda, doublereal *w, doublecomplex *work, integer *lwork, doublereal *rwork, integer *info, ftnlen jobz_len, ftnlen uplo_len) { /* System generated locals */ integer a_dim1, a_offset, i__1, i__2; doublereal d__1; /* Builtin functions */ double sqrt(doublereal); /* Local variables */ integer nb; doublereal eps; integer inde; doublereal anrm; integer imax; doublereal rmin, rmax; extern /* Subroutine */ int dscal_(integer *, doublereal *, doublereal *, integer *); doublereal sigma; extern logical lsame_(char *, char *, ftnlen, ftnlen); integer iinfo; logical lower, wantz; extern doublereal dlamch_(char *, ftnlen); integer iscale; doublereal safmin; extern integer ilaenv_(integer *, char *, char *, integer *, integer *, integer *, integer *, ftnlen, ftnlen); extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen); doublereal bignum; extern doublereal zlanhe_(char *, char *, integer *, doublecomplex *, integer *, doublereal *, ftnlen, ftnlen); integer indtau; extern /* Subroutine */ int dsterf_(integer *, doublereal *, doublereal *, integer *), zlascl_(char *, integer *, integer *, doublereal *, doublereal *, integer *, integer *, doublecomplex *, integer *, integer *, ftnlen); integer indwrk; extern /* Subroutine */ int zhetrd_(char *, integer *, doublecomplex *, integer *, doublereal *, doublereal *, doublecomplex *, doublecomplex *, integer *, integer *, ftnlen); integer llwork; doublereal smlnum; integer lwkopt; logical lquery; extern /* Subroutine */ int zsteqr_(char *, integer *, doublereal *, doublereal *, doublecomplex *, integer *, doublereal *, integer *, ftnlen), zungtr_(char *, integer *, doublecomplex *, integer *, doublecomplex *, doublecomplex *, integer *, integer *, ftnlen); /* -- LAPACK driver routine -- */ /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */ /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Test the input parameters. */ /* Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; --w; --work; --rwork; /* Function Body */ wantz = lsame_(jobz, (char *)"V", (ftnlen)1, (ftnlen)1); lower = lsame_(uplo, (char *)"L", (ftnlen)1, (ftnlen)1); lquery = *lwork == -1; *info = 0; if (! (wantz || lsame_(jobz, (char *)"N", (ftnlen)1, (ftnlen)1))) { *info = -1; } else if (! (lower || lsame_(uplo, (char *)"U", (ftnlen)1, (ftnlen)1))) { *info = -2; } else if (*n < 0) { *info = -3; } else if (*lda < max(1,*n)) { *info = -5; } if (*info == 0) { nb = ilaenv_(&c__1, (char *)"ZHETRD", uplo, n, &c_n1, &c_n1, &c_n1, (ftnlen)6, (ftnlen)1); /* Computing MAX */ i__1 = 1, i__2 = (nb + 1) * *n; lwkopt = max(i__1,i__2); work[1].r = (doublereal) lwkopt, work[1].i = 0.; /* Computing MAX */ i__1 = 1, i__2 = (*n << 1) - 1; if (*lwork < max(i__1,i__2) && ! lquery) { *info = -8; } } if (*info != 0) { i__1 = -(*info); xerbla_((char *)"ZHEEV ", &i__1, (ftnlen)6); return 0; } else if (lquery) { return 0; } /* Quick return if possible */ if (*n == 0) { return 0; } if (*n == 1) { i__1 = a_dim1 + 1; w[1] = a[i__1].r; work[1].r = 1., work[1].i = 0.; if (wantz) { i__1 = a_dim1 + 1; a[i__1].r = 1., a[i__1].i = 0.; } return 0; } /* Get machine constants. */ safmin = dlamch_((char *)"Safe minimum", (ftnlen)12); eps = dlamch_((char *)"Precision", (ftnlen)9); smlnum = safmin / eps; bignum = 1. / smlnum; rmin = sqrt(smlnum); rmax = sqrt(bignum); /* Scale matrix to allowable range, if necessary. */ anrm = zlanhe_((char *)"M", uplo, n, &a[a_offset], lda, &rwork[1], (ftnlen)1, ( ftnlen)1); iscale = 0; if (anrm > 0. && anrm < rmin) { iscale = 1; sigma = rmin / anrm; } else if (anrm > rmax) { iscale = 1; sigma = rmax / anrm; } if (iscale == 1) { zlascl_(uplo, &c__0, &c__0, &c_b18, &sigma, n, n, &a[a_offset], lda, info, (ftnlen)1); } /* Call ZHETRD to reduce Hermitian matrix to tridiagonal form. */ inde = 1; indtau = 1; indwrk = indtau + *n; llwork = *lwork - indwrk + 1; zhetrd_(uplo, n, &a[a_offset], lda, &w[1], &rwork[inde], &work[indtau], & work[indwrk], &llwork, &iinfo, (ftnlen)1); /* For eigenvalues only, call DSTERF. For eigenvectors, first call */ /* ZUNGTR to generate the unitary matrix, then call ZSTEQR. */ if (! wantz) { dsterf_(n, &w[1], &rwork[inde], info); } else { zungtr_(uplo, n, &a[a_offset], lda, &work[indtau], &work[indwrk], & llwork, &iinfo, (ftnlen)1); indwrk = inde + *n; zsteqr_(jobz, n, &w[1], &rwork[inde], &a[a_offset], lda, &rwork[ indwrk], info, (ftnlen)1); } /* If matrix was scaled, then rescale eigenvalues appropriately. */ if (iscale == 1) { if (*info == 0) { imax = *n; } else { imax = *info - 1; } d__1 = 1. / sigma; dscal_(&imax, &d__1, &w[1], &c__1); } /* Set WORK(1) to optimal complex workspace size. */ work[1].r = (doublereal) lwkopt, work[1].i = 0.; return 0; /* End of ZHEEV */ } /* zheev_ */ #ifdef __cplusplus } #endif