/* fortran/zher2.f -- translated by f2c (version 20200916). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #ifdef __cplusplus extern "C" { #endif #include "lmp_f2c.h" /* > \brief \b ZHER2 */ /* =========== DOCUMENTATION =========== */ /* Online html documentation available at */ /* http://www.netlib.org/lapack/explore-html/ */ /* Definition: */ /* =========== */ /* SUBROUTINE ZHER2(UPLO,N,ALPHA,X,INCX,Y,INCY,A,LDA) */ /* .. Scalar Arguments .. */ /* COMPLEX*16 ALPHA */ /* INTEGER INCX,INCY,LDA,N */ /* CHARACTER UPLO */ /* .. */ /* .. Array Arguments .. */ /* COMPLEX*16 A(LDA,*),X(*),Y(*) */ /* .. */ /* > \par Purpose: */ /* ============= */ /* > */ /* > \verbatim */ /* > */ /* > ZHER2 performs the hermitian rank 2 operation */ /* > */ /* > A := alpha*x*y**H + conjg( alpha )*y*x**H + A, */ /* > */ /* > where alpha is a scalar, x and y are n element vectors and A is an n */ /* > by n hermitian matrix. */ /* > \endverbatim */ /* Arguments: */ /* ========== */ /* > \param[in] UPLO */ /* > \verbatim */ /* > UPLO is CHARACTER*1 */ /* > On entry, UPLO specifies whether the upper or lower */ /* > triangular part of the array A is to be referenced as */ /* > follows: */ /* > */ /* > UPLO = 'U' or 'u' Only the upper triangular part of A */ /* > is to be referenced. */ /* > */ /* > UPLO = 'L' or 'l' Only the lower triangular part of A */ /* > is to be referenced. */ /* > \endverbatim */ /* > */ /* > \param[in] N */ /* > \verbatim */ /* > N is INTEGER */ /* > On entry, N specifies the order of the matrix A. */ /* > N must be at least zero. */ /* > \endverbatim */ /* > */ /* > \param[in] ALPHA */ /* > \verbatim */ /* > ALPHA is COMPLEX*16 */ /* > On entry, ALPHA specifies the scalar alpha. */ /* > \endverbatim */ /* > */ /* > \param[in] X */ /* > \verbatim */ /* > X is COMPLEX*16 array, dimension at least */ /* > ( 1 + ( n - 1 )*abs( INCX ) ). */ /* > Before entry, the incremented array X must contain the n */ /* > element vector x. */ /* > \endverbatim */ /* > */ /* > \param[in] INCX */ /* > \verbatim */ /* > INCX is INTEGER */ /* > On entry, INCX specifies the increment for the elements of */ /* > X. INCX must not be zero. */ /* > \endverbatim */ /* > */ /* > \param[in] Y */ /* > \verbatim */ /* > Y is COMPLEX*16 array, dimension at least */ /* > ( 1 + ( n - 1 )*abs( INCY ) ). */ /* > Before entry, the incremented array Y must contain the n */ /* > element vector y. */ /* > \endverbatim */ /* > */ /* > \param[in] INCY */ /* > \verbatim */ /* > INCY is INTEGER */ /* > On entry, INCY specifies the increment for the elements of */ /* > Y. INCY must not be zero. */ /* > \endverbatim */ /* > */ /* > \param[in,out] A */ /* > \verbatim */ /* > A is COMPLEX*16 array, dimension ( LDA, N ) */ /* > Before entry with UPLO = 'U' or 'u', the leading n by n */ /* > upper triangular part of the array A must contain the upper */ /* > triangular part of the hermitian matrix and the strictly */ /* > lower triangular part of A is not referenced. On exit, the */ /* > upper triangular part of the array A is overwritten by the */ /* > upper triangular part of the updated matrix. */ /* > Before entry with UPLO = 'L' or 'l', the leading n by n */ /* > lower triangular part of the array A must contain the lower */ /* > triangular part of the hermitian matrix and the strictly */ /* > upper triangular part of A is not referenced. On exit, the */ /* > lower triangular part of the array A is overwritten by the */ /* > lower triangular part of the updated matrix. */ /* > Note that the imaginary parts of the diagonal elements need */ /* > not be set, they are assumed to be zero, and on exit they */ /* > are set to zero. */ /* > \endverbatim */ /* > */ /* > \param[in] LDA */ /* > \verbatim */ /* > LDA is INTEGER */ /* > On entry, LDA specifies the first dimension of A as declared */ /* > in the calling (sub) program. LDA must be at least */ /* > max( 1, n ). */ /* > \endverbatim */ /* Authors: */ /* ======== */ /* > \author Univ. of Tennessee */ /* > \author Univ. of California Berkeley */ /* > \author Univ. of Colorado Denver */ /* > \author NAG Ltd. */ /* > \ingroup complex16_blas_level2 */ /* > \par Further Details: */ /* ===================== */ /* > */ /* > \verbatim */ /* > */ /* > Level 2 Blas routine. */ /* > */ /* > -- Written on 22-October-1986. */ /* > Jack Dongarra, Argonne National Lab. */ /* > Jeremy Du Croz, Nag Central Office. */ /* > Sven Hammarling, Nag Central Office. */ /* > Richard Hanson, Sandia National Labs. */ /* > \endverbatim */ /* > */ /* ===================================================================== */ /* Subroutine */ int zher2_(char *uplo, integer *n, doublecomplex *alpha, doublecomplex *x, integer *incx, doublecomplex *y, integer *incy, doublecomplex *a, integer *lda, ftnlen uplo_len) { /* System generated locals */ integer a_dim1, a_offset, i__1, i__2, i__3, i__4, i__5, i__6; doublereal d__1; doublecomplex z__1, z__2, z__3, z__4; /* Builtin functions */ void d_cnjg(doublecomplex *, doublecomplex *); /* Local variables */ integer i__, j, ix, iy, jx, jy, kx, ky, info; doublecomplex temp1, temp2; extern logical lsame_(char *, char *, ftnlen, ftnlen); extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen); /* -- Reference BLAS level2 routine -- */ /* -- Reference BLAS is a software package provided by Univ. of Tennessee, -- */ /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* Test the input parameters. */ /* Parameter adjustments */ --x; --y; a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; /* Function Body */ info = 0; if (! lsame_(uplo, (char *)"U", (ftnlen)1, (ftnlen)1) && ! lsame_(uplo, (char *)"L", ( ftnlen)1, (ftnlen)1)) { info = 1; } else if (*n < 0) { info = 2; } else if (*incx == 0) { info = 5; } else if (*incy == 0) { info = 7; } else if (*lda < max(1,*n)) { info = 9; } if (info != 0) { xerbla_((char *)"ZHER2 ", &info, (ftnlen)6); return 0; } /* Quick return if possible. */ if (*n == 0 || alpha->r == 0. && alpha->i == 0.) { return 0; } /* Set up the start points in X and Y if the increments are not both */ /* unity. */ if (*incx != 1 || *incy != 1) { if (*incx > 0) { kx = 1; } else { kx = 1 - (*n - 1) * *incx; } if (*incy > 0) { ky = 1; } else { ky = 1 - (*n - 1) * *incy; } jx = kx; jy = ky; } /* Start the operations. In this version the elements of A are */ /* accessed sequentially with one pass through the triangular part */ /* of A. */ if (lsame_(uplo, (char *)"U", (ftnlen)1, (ftnlen)1)) { /* Form A when A is stored in the upper triangle. */ if (*incx == 1 && *incy == 1) { i__1 = *n; for (j = 1; j <= i__1; ++j) { i__2 = j; i__3 = j; if (x[i__2].r != 0. || x[i__2].i != 0. || (y[i__3].r != 0. || y[i__3].i != 0.)) { d_cnjg(&z__2, &y[j]); z__1.r = alpha->r * z__2.r - alpha->i * z__2.i, z__1.i = alpha->r * z__2.i + alpha->i * z__2.r; temp1.r = z__1.r, temp1.i = z__1.i; i__2 = j; z__2.r = alpha->r * x[i__2].r - alpha->i * x[i__2].i, z__2.i = alpha->r * x[i__2].i + alpha->i * x[i__2] .r; d_cnjg(&z__1, &z__2); temp2.r = z__1.r, temp2.i = z__1.i; i__2 = j - 1; for (i__ = 1; i__ <= i__2; ++i__) { i__3 = i__ + j * a_dim1; i__4 = i__ + j * a_dim1; i__5 = i__; z__3.r = x[i__5].r * temp1.r - x[i__5].i * temp1.i, z__3.i = x[i__5].r * temp1.i + x[i__5].i * temp1.r; z__2.r = a[i__4].r + z__3.r, z__2.i = a[i__4].i + z__3.i; i__6 = i__; z__4.r = y[i__6].r * temp2.r - y[i__6].i * temp2.i, z__4.i = y[i__6].r * temp2.i + y[i__6].i * temp2.r; z__1.r = z__2.r + z__4.r, z__1.i = z__2.i + z__4.i; a[i__3].r = z__1.r, a[i__3].i = z__1.i; /* L10: */ } i__2 = j + j * a_dim1; i__3 = j + j * a_dim1; i__4 = j; z__2.r = x[i__4].r * temp1.r - x[i__4].i * temp1.i, z__2.i = x[i__4].r * temp1.i + x[i__4].i * temp1.r; i__5 = j; z__3.r = y[i__5].r * temp2.r - y[i__5].i * temp2.i, z__3.i = y[i__5].r * temp2.i + y[i__5].i * temp2.r; z__1.r = z__2.r + z__3.r, z__1.i = z__2.i + z__3.i; d__1 = a[i__3].r + z__1.r; a[i__2].r = d__1, a[i__2].i = 0.; } else { i__2 = j + j * a_dim1; i__3 = j + j * a_dim1; d__1 = a[i__3].r; a[i__2].r = d__1, a[i__2].i = 0.; } /* L20: */ } } else { i__1 = *n; for (j = 1; j <= i__1; ++j) { i__2 = jx; i__3 = jy; if (x[i__2].r != 0. || x[i__2].i != 0. || (y[i__3].r != 0. || y[i__3].i != 0.)) { d_cnjg(&z__2, &y[jy]); z__1.r = alpha->r * z__2.r - alpha->i * z__2.i, z__1.i = alpha->r * z__2.i + alpha->i * z__2.r; temp1.r = z__1.r, temp1.i = z__1.i; i__2 = jx; z__2.r = alpha->r * x[i__2].r - alpha->i * x[i__2].i, z__2.i = alpha->r * x[i__2].i + alpha->i * x[i__2] .r; d_cnjg(&z__1, &z__2); temp2.r = z__1.r, temp2.i = z__1.i; ix = kx; iy = ky; i__2 = j - 1; for (i__ = 1; i__ <= i__2; ++i__) { i__3 = i__ + j * a_dim1; i__4 = i__ + j * a_dim1; i__5 = ix; z__3.r = x[i__5].r * temp1.r - x[i__5].i * temp1.i, z__3.i = x[i__5].r * temp1.i + x[i__5].i * temp1.r; z__2.r = a[i__4].r + z__3.r, z__2.i = a[i__4].i + z__3.i; i__6 = iy; z__4.r = y[i__6].r * temp2.r - y[i__6].i * temp2.i, z__4.i = y[i__6].r * temp2.i + y[i__6].i * temp2.r; z__1.r = z__2.r + z__4.r, z__1.i = z__2.i + z__4.i; a[i__3].r = z__1.r, a[i__3].i = z__1.i; ix += *incx; iy += *incy; /* L30: */ } i__2 = j + j * a_dim1; i__3 = j + j * a_dim1; i__4 = jx; z__2.r = x[i__4].r * temp1.r - x[i__4].i * temp1.i, z__2.i = x[i__4].r * temp1.i + x[i__4].i * temp1.r; i__5 = jy; z__3.r = y[i__5].r * temp2.r - y[i__5].i * temp2.i, z__3.i = y[i__5].r * temp2.i + y[i__5].i * temp2.r; z__1.r = z__2.r + z__3.r, z__1.i = z__2.i + z__3.i; d__1 = a[i__3].r + z__1.r; a[i__2].r = d__1, a[i__2].i = 0.; } else { i__2 = j + j * a_dim1; i__3 = j + j * a_dim1; d__1 = a[i__3].r; a[i__2].r = d__1, a[i__2].i = 0.; } jx += *incx; jy += *incy; /* L40: */ } } } else { /* Form A when A is stored in the lower triangle. */ if (*incx == 1 && *incy == 1) { i__1 = *n; for (j = 1; j <= i__1; ++j) { i__2 = j; i__3 = j; if (x[i__2].r != 0. || x[i__2].i != 0. || (y[i__3].r != 0. || y[i__3].i != 0.)) { d_cnjg(&z__2, &y[j]); z__1.r = alpha->r * z__2.r - alpha->i * z__2.i, z__1.i = alpha->r * z__2.i + alpha->i * z__2.r; temp1.r = z__1.r, temp1.i = z__1.i; i__2 = j; z__2.r = alpha->r * x[i__2].r - alpha->i * x[i__2].i, z__2.i = alpha->r * x[i__2].i + alpha->i * x[i__2] .r; d_cnjg(&z__1, &z__2); temp2.r = z__1.r, temp2.i = z__1.i; i__2 = j + j * a_dim1; i__3 = j + j * a_dim1; i__4 = j; z__2.r = x[i__4].r * temp1.r - x[i__4].i * temp1.i, z__2.i = x[i__4].r * temp1.i + x[i__4].i * temp1.r; i__5 = j; z__3.r = y[i__5].r * temp2.r - y[i__5].i * temp2.i, z__3.i = y[i__5].r * temp2.i + y[i__5].i * temp2.r; z__1.r = z__2.r + z__3.r, z__1.i = z__2.i + z__3.i; d__1 = a[i__3].r + z__1.r; a[i__2].r = d__1, a[i__2].i = 0.; i__2 = *n; for (i__ = j + 1; i__ <= i__2; ++i__) { i__3 = i__ + j * a_dim1; i__4 = i__ + j * a_dim1; i__5 = i__; z__3.r = x[i__5].r * temp1.r - x[i__5].i * temp1.i, z__3.i = x[i__5].r * temp1.i + x[i__5].i * temp1.r; z__2.r = a[i__4].r + z__3.r, z__2.i = a[i__4].i + z__3.i; i__6 = i__; z__4.r = y[i__6].r * temp2.r - y[i__6].i * temp2.i, z__4.i = y[i__6].r * temp2.i + y[i__6].i * temp2.r; z__1.r = z__2.r + z__4.r, z__1.i = z__2.i + z__4.i; a[i__3].r = z__1.r, a[i__3].i = z__1.i; /* L50: */ } } else { i__2 = j + j * a_dim1; i__3 = j + j * a_dim1; d__1 = a[i__3].r; a[i__2].r = d__1, a[i__2].i = 0.; } /* L60: */ } } else { i__1 = *n; for (j = 1; j <= i__1; ++j) { i__2 = jx; i__3 = jy; if (x[i__2].r != 0. || x[i__2].i != 0. || (y[i__3].r != 0. || y[i__3].i != 0.)) { d_cnjg(&z__2, &y[jy]); z__1.r = alpha->r * z__2.r - alpha->i * z__2.i, z__1.i = alpha->r * z__2.i + alpha->i * z__2.r; temp1.r = z__1.r, temp1.i = z__1.i; i__2 = jx; z__2.r = alpha->r * x[i__2].r - alpha->i * x[i__2].i, z__2.i = alpha->r * x[i__2].i + alpha->i * x[i__2] .r; d_cnjg(&z__1, &z__2); temp2.r = z__1.r, temp2.i = z__1.i; i__2 = j + j * a_dim1; i__3 = j + j * a_dim1; i__4 = jx; z__2.r = x[i__4].r * temp1.r - x[i__4].i * temp1.i, z__2.i = x[i__4].r * temp1.i + x[i__4].i * temp1.r; i__5 = jy; z__3.r = y[i__5].r * temp2.r - y[i__5].i * temp2.i, z__3.i = y[i__5].r * temp2.i + y[i__5].i * temp2.r; z__1.r = z__2.r + z__3.r, z__1.i = z__2.i + z__3.i; d__1 = a[i__3].r + z__1.r; a[i__2].r = d__1, a[i__2].i = 0.; ix = jx; iy = jy; i__2 = *n; for (i__ = j + 1; i__ <= i__2; ++i__) { ix += *incx; iy += *incy; i__3 = i__ + j * a_dim1; i__4 = i__ + j * a_dim1; i__5 = ix; z__3.r = x[i__5].r * temp1.r - x[i__5].i * temp1.i, z__3.i = x[i__5].r * temp1.i + x[i__5].i * temp1.r; z__2.r = a[i__4].r + z__3.r, z__2.i = a[i__4].i + z__3.i; i__6 = iy; z__4.r = y[i__6].r * temp2.r - y[i__6].i * temp2.i, z__4.i = y[i__6].r * temp2.i + y[i__6].i * temp2.r; z__1.r = z__2.r + z__4.r, z__1.i = z__2.i + z__4.i; a[i__3].r = z__1.r, a[i__3].i = z__1.i; /* L70: */ } } else { i__2 = j + j * a_dim1; i__3 = j + j * a_dim1; d__1 = a[i__3].r; a[i__2].r = d__1, a[i__2].i = 0.; } jx += *incx; jy += *incy; /* L80: */ } } } return 0; /* End of ZHER2 */ } /* zher2_ */ #ifdef __cplusplus } #endif