/* fortran/zhetd2.f -- translated by f2c (version 20200916). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #ifdef __cplusplus extern "C" { #endif #include "lmp_f2c.h" /* Table of constant values */ static doublecomplex c_b2 = {0.,0.}; static integer c__1 = 1; /* > \brief \b ZHETD2 reduces a Hermitian matrix to real symmetric tridiagonal form by an unitary similarity t ransformation (unblocked algorithm). */ /* =========== DOCUMENTATION =========== */ /* Online html documentation available at */ /* http://www.netlib.org/lapack/explore-html/ */ /* > \htmlonly */ /* > Download ZHETD2 + dependencies */ /* > */ /* > [TGZ] */ /* > */ /* > [ZIP] */ /* > */ /* > [TXT] */ /* > \endhtmlonly */ /* Definition: */ /* =========== */ /* SUBROUTINE ZHETD2( UPLO, N, A, LDA, D, E, TAU, INFO ) */ /* .. Scalar Arguments .. */ /* CHARACTER UPLO */ /* INTEGER INFO, LDA, N */ /* .. */ /* .. Array Arguments .. */ /* DOUBLE PRECISION D( * ), E( * ) */ /* COMPLEX*16 A( LDA, * ), TAU( * ) */ /* .. */ /* > \par Purpose: */ /* ============= */ /* > */ /* > \verbatim */ /* > */ /* > ZHETD2 reduces a complex Hermitian matrix A to real symmetric */ /* > tridiagonal form T by a unitary similarity transformation: */ /* > Q**H * A * Q = T. */ /* > \endverbatim */ /* Arguments: */ /* ========== */ /* > \param[in] UPLO */ /* > \verbatim */ /* > UPLO is CHARACTER*1 */ /* > Specifies whether the upper or lower triangular part of the */ /* > Hermitian matrix A is stored: */ /* > = 'U': Upper triangular */ /* > = 'L': Lower triangular */ /* > \endverbatim */ /* > */ /* > \param[in] N */ /* > \verbatim */ /* > N is INTEGER */ /* > The order of the matrix A. N >= 0. */ /* > \endverbatim */ /* > */ /* > \param[in,out] A */ /* > \verbatim */ /* > A is COMPLEX*16 array, dimension (LDA,N) */ /* > On entry, the Hermitian matrix A. If UPLO = 'U', the leading */ /* > n-by-n upper triangular part of A contains the upper */ /* > triangular part of the matrix A, and the strictly lower */ /* > triangular part of A is not referenced. If UPLO = 'L', the */ /* > leading n-by-n lower triangular part of A contains the lower */ /* > triangular part of the matrix A, and the strictly upper */ /* > triangular part of A is not referenced. */ /* > On exit, if UPLO = 'U', the diagonal and first superdiagonal */ /* > of A are overwritten by the corresponding elements of the */ /* > tridiagonal matrix T, and the elements above the first */ /* > superdiagonal, with the array TAU, represent the unitary */ /* > matrix Q as a product of elementary reflectors; if UPLO */ /* > = 'L', the diagonal and first subdiagonal of A are over- */ /* > written by the corresponding elements of the tridiagonal */ /* > matrix T, and the elements below the first subdiagonal, with */ /* > the array TAU, represent the unitary matrix Q as a product */ /* > of elementary reflectors. See Further Details. */ /* > \endverbatim */ /* > */ /* > \param[in] LDA */ /* > \verbatim */ /* > LDA is INTEGER */ /* > The leading dimension of the array A. LDA >= max(1,N). */ /* > \endverbatim */ /* > */ /* > \param[out] D */ /* > \verbatim */ /* > D is DOUBLE PRECISION array, dimension (N) */ /* > The diagonal elements of the tridiagonal matrix T: */ /* > D(i) = A(i,i). */ /* > \endverbatim */ /* > */ /* > \param[out] E */ /* > \verbatim */ /* > E is DOUBLE PRECISION array, dimension (N-1) */ /* > The off-diagonal elements of the tridiagonal matrix T: */ /* > E(i) = A(i,i+1) if UPLO = 'U', E(i) = A(i+1,i) if UPLO = 'L'. */ /* > \endverbatim */ /* > */ /* > \param[out] TAU */ /* > \verbatim */ /* > TAU is COMPLEX*16 array, dimension (N-1) */ /* > The scalar factors of the elementary reflectors (see Further */ /* > Details). */ /* > \endverbatim */ /* > */ /* > \param[out] INFO */ /* > \verbatim */ /* > INFO is INTEGER */ /* > = 0: successful exit */ /* > < 0: if INFO = -i, the i-th argument had an illegal value. */ /* > \endverbatim */ /* Authors: */ /* ======== */ /* > \author Univ. of Tennessee */ /* > \author Univ. of California Berkeley */ /* > \author Univ. of Colorado Denver */ /* > \author NAG Ltd. */ /* > \ingroup complex16HEcomputational */ /* > \par Further Details: */ /* ===================== */ /* > */ /* > \verbatim */ /* > */ /* > If UPLO = 'U', the matrix Q is represented as a product of elementary */ /* > reflectors */ /* > */ /* > Q = H(n-1) . . . H(2) H(1). */ /* > */ /* > Each H(i) has the form */ /* > */ /* > H(i) = I - tau * v * v**H */ /* > */ /* > where tau is a complex scalar, and v is a complex vector with */ /* > v(i+1:n) = 0 and v(i) = 1; v(1:i-1) is stored on exit in */ /* > A(1:i-1,i+1), and tau in TAU(i). */ /* > */ /* > If UPLO = 'L', the matrix Q is represented as a product of elementary */ /* > reflectors */ /* > */ /* > Q = H(1) H(2) . . . H(n-1). */ /* > */ /* > Each H(i) has the form */ /* > */ /* > H(i) = I - tau * v * v**H */ /* > */ /* > where tau is a complex scalar, and v is a complex vector with */ /* > v(1:i) = 0 and v(i+1) = 1; v(i+2:n) is stored on exit in A(i+2:n,i), */ /* > and tau in TAU(i). */ /* > */ /* > The contents of A on exit are illustrated by the following examples */ /* > with n = 5: */ /* > */ /* > if UPLO = 'U': if UPLO = 'L': */ /* > */ /* > ( d e v2 v3 v4 ) ( d ) */ /* > ( d e v3 v4 ) ( e d ) */ /* > ( d e v4 ) ( v1 e d ) */ /* > ( d e ) ( v1 v2 e d ) */ /* > ( d ) ( v1 v2 v3 e d ) */ /* > */ /* > where d and e denote diagonal and off-diagonal elements of T, and vi */ /* > denotes an element of the vector defining H(i). */ /* > \endverbatim */ /* > */ /* ===================================================================== */ /* Subroutine */ int zhetd2_(char *uplo, integer *n, doublecomplex *a, integer *lda, doublereal *d__, doublereal *e, doublecomplex *tau, integer *info, ftnlen uplo_len) { /* System generated locals */ integer a_dim1, a_offset, i__1, i__2, i__3; doublereal d__1; doublecomplex z__1, z__2, z__3, z__4; /* Local variables */ integer i__; doublecomplex taui; extern /* Subroutine */ int zher2_(char *, integer *, doublecomplex *, doublecomplex *, integer *, doublecomplex *, integer *, doublecomplex *, integer *, ftnlen); doublecomplex alpha; extern logical lsame_(char *, char *, ftnlen, ftnlen); extern /* Double Complex */ VOID zdotc_(doublecomplex *, integer *, doublecomplex *, integer *, doublecomplex *, integer *); extern /* Subroutine */ int zhemv_(char *, integer *, doublecomplex *, doublecomplex *, integer *, doublecomplex *, integer *, doublecomplex *, doublecomplex *, integer *, ftnlen); logical upper; extern /* Subroutine */ int zaxpy_(integer *, doublecomplex *, doublecomplex *, integer *, doublecomplex *, integer *), xerbla_( char *, integer *, ftnlen), zlarfg_(integer *, doublecomplex *, doublecomplex *, integer *, doublecomplex *); /* -- LAPACK computational routine -- */ /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */ /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Test the input parameters */ /* Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; --d__; --e; --tau; /* Function Body */ *info = 0; upper = lsame_(uplo, (char *)"U", (ftnlen)1, (ftnlen)1); if (! upper && ! lsame_(uplo, (char *)"L", (ftnlen)1, (ftnlen)1)) { *info = -1; } else if (*n < 0) { *info = -2; } else if (*lda < max(1,*n)) { *info = -4; } if (*info != 0) { i__1 = -(*info); xerbla_((char *)"ZHETD2", &i__1, (ftnlen)6); return 0; } /* Quick return if possible */ if (*n <= 0) { return 0; } if (upper) { /* Reduce the upper triangle of A */ i__1 = *n + *n * a_dim1; i__2 = *n + *n * a_dim1; d__1 = a[i__2].r; a[i__1].r = d__1, a[i__1].i = 0.; for (i__ = *n - 1; i__ >= 1; --i__) { /* Generate elementary reflector H(i) = I - tau * v * v**H */ /* to annihilate A(1:i-1,i+1) */ i__1 = i__ + (i__ + 1) * a_dim1; alpha.r = a[i__1].r, alpha.i = a[i__1].i; zlarfg_(&i__, &alpha, &a[(i__ + 1) * a_dim1 + 1], &c__1, &taui); e[i__] = alpha.r; if (taui.r != 0. || taui.i != 0.) { /* Apply H(i) from both sides to A(1:i,1:i) */ i__1 = i__ + (i__ + 1) * a_dim1; a[i__1].r = 1., a[i__1].i = 0.; /* Compute x := tau * A * v storing x in TAU(1:i) */ zhemv_(uplo, &i__, &taui, &a[a_offset], lda, &a[(i__ + 1) * a_dim1 + 1], &c__1, &c_b2, &tau[1], &c__1, (ftnlen)1); /* Compute w := x - 1/2 * tau * (x**H * v) * v */ z__3.r = -.5, z__3.i = -0.; z__2.r = z__3.r * taui.r - z__3.i * taui.i, z__2.i = z__3.r * taui.i + z__3.i * taui.r; zdotc_(&z__4, &i__, &tau[1], &c__1, &a[(i__ + 1) * a_dim1 + 1] , &c__1); z__1.r = z__2.r * z__4.r - z__2.i * z__4.i, z__1.i = z__2.r * z__4.i + z__2.i * z__4.r; alpha.r = z__1.r, alpha.i = z__1.i; zaxpy_(&i__, &alpha, &a[(i__ + 1) * a_dim1 + 1], &c__1, &tau[ 1], &c__1); /* Apply the transformation as a rank-2 update: */ /* A := A - v * w**H - w * v**H */ z__1.r = -1., z__1.i = -0.; zher2_(uplo, &i__, &z__1, &a[(i__ + 1) * a_dim1 + 1], &c__1, & tau[1], &c__1, &a[a_offset], lda, (ftnlen)1); } else { i__1 = i__ + i__ * a_dim1; i__2 = i__ + i__ * a_dim1; d__1 = a[i__2].r; a[i__1].r = d__1, a[i__1].i = 0.; } i__1 = i__ + (i__ + 1) * a_dim1; i__2 = i__; a[i__1].r = e[i__2], a[i__1].i = 0.; i__1 = i__ + 1 + (i__ + 1) * a_dim1; d__[i__ + 1] = a[i__1].r; i__1 = i__; tau[i__1].r = taui.r, tau[i__1].i = taui.i; /* L10: */ } i__1 = a_dim1 + 1; d__[1] = a[i__1].r; } else { /* Reduce the lower triangle of A */ i__1 = a_dim1 + 1; i__2 = a_dim1 + 1; d__1 = a[i__2].r; a[i__1].r = d__1, a[i__1].i = 0.; i__1 = *n - 1; for (i__ = 1; i__ <= i__1; ++i__) { /* Generate elementary reflector H(i) = I - tau * v * v**H */ /* to annihilate A(i+2:n,i) */ i__2 = i__ + 1 + i__ * a_dim1; alpha.r = a[i__2].r, alpha.i = a[i__2].i; i__2 = *n - i__; /* Computing MIN */ i__3 = i__ + 2; zlarfg_(&i__2, &alpha, &a[min(i__3,*n) + i__ * a_dim1], &c__1, & taui); e[i__] = alpha.r; if (taui.r != 0. || taui.i != 0.) { /* Apply H(i) from both sides to A(i+1:n,i+1:n) */ i__2 = i__ + 1 + i__ * a_dim1; a[i__2].r = 1., a[i__2].i = 0.; /* Compute x := tau * A * v storing y in TAU(i:n-1) */ i__2 = *n - i__; zhemv_(uplo, &i__2, &taui, &a[i__ + 1 + (i__ + 1) * a_dim1], lda, &a[i__ + 1 + i__ * a_dim1], &c__1, &c_b2, &tau[ i__], &c__1, (ftnlen)1); /* Compute w := x - 1/2 * tau * (x**H * v) * v */ z__3.r = -.5, z__3.i = -0.; z__2.r = z__3.r * taui.r - z__3.i * taui.i, z__2.i = z__3.r * taui.i + z__3.i * taui.r; i__2 = *n - i__; zdotc_(&z__4, &i__2, &tau[i__], &c__1, &a[i__ + 1 + i__ * a_dim1], &c__1); z__1.r = z__2.r * z__4.r - z__2.i * z__4.i, z__1.i = z__2.r * z__4.i + z__2.i * z__4.r; alpha.r = z__1.r, alpha.i = z__1.i; i__2 = *n - i__; zaxpy_(&i__2, &alpha, &a[i__ + 1 + i__ * a_dim1], &c__1, &tau[ i__], &c__1); /* Apply the transformation as a rank-2 update: */ /* A := A - v * w**H - w * v**H */ i__2 = *n - i__; z__1.r = -1., z__1.i = -0.; zher2_(uplo, &i__2, &z__1, &a[i__ + 1 + i__ * a_dim1], &c__1, &tau[i__], &c__1, &a[i__ + 1 + (i__ + 1) * a_dim1], lda, (ftnlen)1); } else { i__2 = i__ + 1 + (i__ + 1) * a_dim1; i__3 = i__ + 1 + (i__ + 1) * a_dim1; d__1 = a[i__3].r; a[i__2].r = d__1, a[i__2].i = 0.; } i__2 = i__ + 1 + i__ * a_dim1; i__3 = i__; a[i__2].r = e[i__3], a[i__2].i = 0.; i__2 = i__ + i__ * a_dim1; d__[i__] = a[i__2].r; i__2 = i__; tau[i__2].r = taui.r, tau[i__2].i = taui.i; /* L20: */ } i__1 = *n + *n * a_dim1; d__[*n] = a[i__1].r; } return 0; /* End of ZHETD2 */ } /* zhetd2_ */ #ifdef __cplusplus } #endif