/* fortran/zlarfb.f -- translated by f2c (version 20200916). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #ifdef __cplusplus extern "C" { #endif #include "lmp_f2c.h" /* Table of constant values */ static doublecomplex c_b1 = {1.,0.}; static integer c__1 = 1; /* > \brief \b ZLARFB applies a block reflector or its conjugate-transpose to a general rectangular matrix. */ /* =========== DOCUMENTATION =========== */ /* Online html documentation available at */ /* http://www.netlib.org/lapack/explore-html/ */ /* > \htmlonly */ /* > Download ZLARFB + dependencies */ /* > */ /* > [TGZ] */ /* > */ /* > [ZIP] */ /* > */ /* > [TXT] */ /* > \endhtmlonly */ /* Definition: */ /* =========== */ /* SUBROUTINE ZLARFB( SIDE, TRANS, DIRECT, STOREV, M, N, K, V, LDV, */ /* T, LDT, C, LDC, WORK, LDWORK ) */ /* .. Scalar Arguments .. */ /* CHARACTER DIRECT, SIDE, STOREV, TRANS */ /* INTEGER K, LDC, LDT, LDV, LDWORK, M, N */ /* .. */ /* .. Array Arguments .. */ /* COMPLEX*16 C( LDC, * ), T( LDT, * ), V( LDV, * ), */ /* $ WORK( LDWORK, * ) */ /* .. */ /* > \par Purpose: */ /* ============= */ /* > */ /* > \verbatim */ /* > */ /* > ZLARFB applies a complex block reflector H or its transpose H**H to a */ /* > complex M-by-N matrix C, from either the left or the right. */ /* > \endverbatim */ /* Arguments: */ /* ========== */ /* > \param[in] SIDE */ /* > \verbatim */ /* > SIDE is CHARACTER*1 */ /* > = 'L': apply H or H**H from the Left */ /* > = 'R': apply H or H**H from the Right */ /* > \endverbatim */ /* > */ /* > \param[in] TRANS */ /* > \verbatim */ /* > TRANS is CHARACTER*1 */ /* > = 'N': apply H (No transpose) */ /* > = 'C': apply H**H (Conjugate transpose) */ /* > \endverbatim */ /* > */ /* > \param[in] DIRECT */ /* > \verbatim */ /* > DIRECT is CHARACTER*1 */ /* > Indicates how H is formed from a product of elementary */ /* > reflectors */ /* > = 'F': H = H(1) H(2) . . . H(k) (Forward) */ /* > = 'B': H = H(k) . . . H(2) H(1) (Backward) */ /* > \endverbatim */ /* > */ /* > \param[in] STOREV */ /* > \verbatim */ /* > STOREV is CHARACTER*1 */ /* > Indicates how the vectors which define the elementary */ /* > reflectors are stored: */ /* > = 'C': Columnwise */ /* > = 'R': Rowwise */ /* > \endverbatim */ /* > */ /* > \param[in] M */ /* > \verbatim */ /* > M is INTEGER */ /* > The number of rows of the matrix C. */ /* > \endverbatim */ /* > */ /* > \param[in] N */ /* > \verbatim */ /* > N is INTEGER */ /* > The number of columns of the matrix C. */ /* > \endverbatim */ /* > */ /* > \param[in] K */ /* > \verbatim */ /* > K is INTEGER */ /* > The order of the matrix T (= the number of elementary */ /* > reflectors whose product defines the block reflector). */ /* > If SIDE = 'L', M >= K >= 0; */ /* > if SIDE = 'R', N >= K >= 0. */ /* > \endverbatim */ /* > */ /* > \param[in] V */ /* > \verbatim */ /* > V is COMPLEX*16 array, dimension */ /* > (LDV,K) if STOREV = 'C' */ /* > (LDV,M) if STOREV = 'R' and SIDE = 'L' */ /* > (LDV,N) if STOREV = 'R' and SIDE = 'R' */ /* > See Further Details. */ /* > \endverbatim */ /* > */ /* > \param[in] LDV */ /* > \verbatim */ /* > LDV is INTEGER */ /* > The leading dimension of the array V. */ /* > If STOREV = 'C' and SIDE = 'L', LDV >= max(1,M); */ /* > if STOREV = 'C' and SIDE = 'R', LDV >= max(1,N); */ /* > if STOREV = 'R', LDV >= K. */ /* > \endverbatim */ /* > */ /* > \param[in] T */ /* > \verbatim */ /* > T is COMPLEX*16 array, dimension (LDT,K) */ /* > The triangular K-by-K matrix T in the representation of the */ /* > block reflector. */ /* > \endverbatim */ /* > */ /* > \param[in] LDT */ /* > \verbatim */ /* > LDT is INTEGER */ /* > The leading dimension of the array T. LDT >= K. */ /* > \endverbatim */ /* > */ /* > \param[in,out] C */ /* > \verbatim */ /* > C is COMPLEX*16 array, dimension (LDC,N) */ /* > On entry, the M-by-N matrix C. */ /* > On exit, C is overwritten by H*C or H**H*C or C*H or C*H**H. */ /* > \endverbatim */ /* > */ /* > \param[in] LDC */ /* > \verbatim */ /* > LDC is INTEGER */ /* > The leading dimension of the array C. LDC >= max(1,M). */ /* > \endverbatim */ /* > */ /* > \param[out] WORK */ /* > \verbatim */ /* > WORK is COMPLEX*16 array, dimension (LDWORK,K) */ /* > \endverbatim */ /* > */ /* > \param[in] LDWORK */ /* > \verbatim */ /* > LDWORK is INTEGER */ /* > The leading dimension of the array WORK. */ /* > If SIDE = 'L', LDWORK >= max(1,N); */ /* > if SIDE = 'R', LDWORK >= max(1,M). */ /* > \endverbatim */ /* Authors: */ /* ======== */ /* > \author Univ. of Tennessee */ /* > \author Univ. of California Berkeley */ /* > \author Univ. of Colorado Denver */ /* > \author NAG Ltd. */ /* > \ingroup complex16OTHERauxiliary */ /* > \par Further Details: */ /* ===================== */ /* > */ /* > \verbatim */ /* > */ /* > The shape of the matrix V and the storage of the vectors which define */ /* > the H(i) is best illustrated by the following example with n = 5 and */ /* > k = 3. The elements equal to 1 are not stored; the corresponding */ /* > array elements are modified but restored on exit. The rest of the */ /* > array is not used. */ /* > */ /* > DIRECT = 'F' and STOREV = 'C': DIRECT = 'F' and STOREV = 'R': */ /* > */ /* > V = ( 1 ) V = ( 1 v1 v1 v1 v1 ) */ /* > ( v1 1 ) ( 1 v2 v2 v2 ) */ /* > ( v1 v2 1 ) ( 1 v3 v3 ) */ /* > ( v1 v2 v3 ) */ /* > ( v1 v2 v3 ) */ /* > */ /* > DIRECT = 'B' and STOREV = 'C': DIRECT = 'B' and STOREV = 'R': */ /* > */ /* > V = ( v1 v2 v3 ) V = ( v1 v1 1 ) */ /* > ( v1 v2 v3 ) ( v2 v2 v2 1 ) */ /* > ( 1 v2 v3 ) ( v3 v3 v3 v3 1 ) */ /* > ( 1 v3 ) */ /* > ( 1 ) */ /* > \endverbatim */ /* > */ /* ===================================================================== */ /* Subroutine */ int zlarfb_(char *side, char *trans, char *direct, char * storev, integer *m, integer *n, integer *k, doublecomplex *v, integer *ldv, doublecomplex *t, integer *ldt, doublecomplex *c__, integer * ldc, doublecomplex *work, integer *ldwork, ftnlen side_len, ftnlen trans_len, ftnlen direct_len, ftnlen storev_len) { /* System generated locals */ integer c_dim1, c_offset, t_dim1, t_offset, v_dim1, v_offset, work_dim1, work_offset, i__1, i__2, i__3, i__4, i__5; doublecomplex z__1, z__2; /* Builtin functions */ void d_cnjg(doublecomplex *, doublecomplex *); /* Local variables */ integer i__, j; extern logical lsame_(char *, char *, ftnlen, ftnlen); extern /* Subroutine */ int zgemm_(char *, char *, integer *, integer *, integer *, doublecomplex *, doublecomplex *, integer *, doublecomplex *, integer *, doublecomplex *, doublecomplex *, integer *, ftnlen, ftnlen), zcopy_(integer *, doublecomplex *, integer *, doublecomplex *, integer *), ztrmm_(char *, char *, char *, char *, integer *, integer *, doublecomplex *, doublecomplex *, integer *, doublecomplex *, integer *, ftnlen, ftnlen, ftnlen, ftnlen), zlacgv_(integer *, doublecomplex *, integer *); char transt[1]; /* -- LAPACK auxiliary routine -- */ /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */ /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Quick return if possible */ /* Parameter adjustments */ v_dim1 = *ldv; v_offset = 1 + v_dim1; v -= v_offset; t_dim1 = *ldt; t_offset = 1 + t_dim1; t -= t_offset; c_dim1 = *ldc; c_offset = 1 + c_dim1; c__ -= c_offset; work_dim1 = *ldwork; work_offset = 1 + work_dim1; work -= work_offset; /* Function Body */ if (*m <= 0 || *n <= 0) { return 0; } if (lsame_(trans, (char *)"N", (ftnlen)1, (ftnlen)1)) { *(unsigned char *)transt = 'C'; } else { *(unsigned char *)transt = 'N'; } if (lsame_(storev, (char *)"C", (ftnlen)1, (ftnlen)1)) { if (lsame_(direct, (char *)"F", (ftnlen)1, (ftnlen)1)) { /* Let V = ( V1 ) (first K rows) */ /* ( V2 ) */ /* where V1 is unit lower triangular. */ if (lsame_(side, (char *)"L", (ftnlen)1, (ftnlen)1)) { /* Form H * C or H**H * C where C = ( C1 ) */ /* ( C2 ) */ /* W := C**H * V = (C1**H * V1 + C2**H * V2) (stored in WORK) */ /* W := C1**H */ i__1 = *k; for (j = 1; j <= i__1; ++j) { zcopy_(n, &c__[j + c_dim1], ldc, &work[j * work_dim1 + 1], &c__1); zlacgv_(n, &work[j * work_dim1 + 1], &c__1); /* L10: */ } /* W := W * V1 */ ztrmm_((char *)"Right", (char *)"Lower", (char *)"No transpose", (char *)"Unit", n, k, &c_b1, &v[v_offset], ldv, &work[work_offset], ldwork, ( ftnlen)5, (ftnlen)5, (ftnlen)12, (ftnlen)4); if (*m > *k) { /* W := W + C2**H * V2 */ i__1 = *m - *k; zgemm_((char *)"Conjugate transpose", (char *)"No transpose", n, k, &i__1, &c_b1, &c__[*k + 1 + c_dim1], ldc, &v[*k + 1 + v_dim1], ldv, &c_b1, &work[work_offset], ldwork, ( ftnlen)19, (ftnlen)12); } /* W := W * T**H or W * T */ ztrmm_((char *)"Right", (char *)"Upper", transt, (char *)"Non-unit", n, k, &c_b1, &t[ t_offset], ldt, &work[work_offset], ldwork, (ftnlen)5, (ftnlen)5, (ftnlen)1, (ftnlen)8); /* C := C - V * W**H */ if (*m > *k) { /* C2 := C2 - V2 * W**H */ i__1 = *m - *k; z__1.r = -1., z__1.i = -0.; zgemm_((char *)"No transpose", (char *)"Conjugate transpose", &i__1, n, k, &z__1, &v[*k + 1 + v_dim1], ldv, &work[ work_offset], ldwork, &c_b1, &c__[*k + 1 + c_dim1] , ldc, (ftnlen)12, (ftnlen)19); } /* W := W * V1**H */ ztrmm_((char *)"Right", (char *)"Lower", (char *)"Conjugate transpose", (char *)"Unit", n, k, &c_b1, &v[v_offset], ldv, &work[work_offset], ldwork, (ftnlen)5, (ftnlen)5, (ftnlen)19, (ftnlen)4); /* C1 := C1 - W**H */ i__1 = *k; for (j = 1; j <= i__1; ++j) { i__2 = *n; for (i__ = 1; i__ <= i__2; ++i__) { i__3 = j + i__ * c_dim1; i__4 = j + i__ * c_dim1; d_cnjg(&z__2, &work[i__ + j * work_dim1]); z__1.r = c__[i__4].r - z__2.r, z__1.i = c__[i__4].i - z__2.i; c__[i__3].r = z__1.r, c__[i__3].i = z__1.i; /* L20: */ } /* L30: */ } } else if (lsame_(side, (char *)"R", (ftnlen)1, (ftnlen)1)) { /* Form C * H or C * H**H where C = ( C1 C2 ) */ /* W := C * V = (C1*V1 + C2*V2) (stored in WORK) */ /* W := C1 */ i__1 = *k; for (j = 1; j <= i__1; ++j) { zcopy_(m, &c__[j * c_dim1 + 1], &c__1, &work[j * work_dim1 + 1], &c__1); /* L40: */ } /* W := W * V1 */ ztrmm_((char *)"Right", (char *)"Lower", (char *)"No transpose", (char *)"Unit", m, k, &c_b1, &v[v_offset], ldv, &work[work_offset], ldwork, ( ftnlen)5, (ftnlen)5, (ftnlen)12, (ftnlen)4); if (*n > *k) { /* W := W + C2 * V2 */ i__1 = *n - *k; zgemm_((char *)"No transpose", (char *)"No transpose", m, k, &i__1, &c_b1, &c__[(*k + 1) * c_dim1 + 1], ldc, &v[*k + 1 + v_dim1], ldv, &c_b1, &work[work_offset], ldwork, ( ftnlen)12, (ftnlen)12); } /* W := W * T or W * T**H */ ztrmm_((char *)"Right", (char *)"Upper", trans, (char *)"Non-unit", m, k, &c_b1, &t[ t_offset], ldt, &work[work_offset], ldwork, (ftnlen)5, (ftnlen)5, (ftnlen)1, (ftnlen)8); /* C := C - W * V**H */ if (*n > *k) { /* C2 := C2 - W * V2**H */ i__1 = *n - *k; z__1.r = -1., z__1.i = -0.; zgemm_((char *)"No transpose", (char *)"Conjugate transpose", m, &i__1, k, &z__1, &work[work_offset], ldwork, &v[*k + 1 + v_dim1], ldv, &c_b1, &c__[(*k + 1) * c_dim1 + 1], ldc, (ftnlen)12, (ftnlen)19); } /* W := W * V1**H */ ztrmm_((char *)"Right", (char *)"Lower", (char *)"Conjugate transpose", (char *)"Unit", m, k, &c_b1, &v[v_offset], ldv, &work[work_offset], ldwork, (ftnlen)5, (ftnlen)5, (ftnlen)19, (ftnlen)4); /* C1 := C1 - W */ i__1 = *k; for (j = 1; j <= i__1; ++j) { i__2 = *m; for (i__ = 1; i__ <= i__2; ++i__) { i__3 = i__ + j * c_dim1; i__4 = i__ + j * c_dim1; i__5 = i__ + j * work_dim1; z__1.r = c__[i__4].r - work[i__5].r, z__1.i = c__[ i__4].i - work[i__5].i; c__[i__3].r = z__1.r, c__[i__3].i = z__1.i; /* L50: */ } /* L60: */ } } } else { /* Let V = ( V1 ) */ /* ( V2 ) (last K rows) */ /* where V2 is unit upper triangular. */ if (lsame_(side, (char *)"L", (ftnlen)1, (ftnlen)1)) { /* Form H * C or H**H * C where C = ( C1 ) */ /* ( C2 ) */ /* W := C**H * V = (C1**H * V1 + C2**H * V2) (stored in WORK) */ /* W := C2**H */ i__1 = *k; for (j = 1; j <= i__1; ++j) { zcopy_(n, &c__[*m - *k + j + c_dim1], ldc, &work[j * work_dim1 + 1], &c__1); zlacgv_(n, &work[j * work_dim1 + 1], &c__1); /* L70: */ } /* W := W * V2 */ ztrmm_((char *)"Right", (char *)"Upper", (char *)"No transpose", (char *)"Unit", n, k, &c_b1, &v[*m - *k + 1 + v_dim1], ldv, &work[work_offset], ldwork, (ftnlen)5, (ftnlen)5, (ftnlen)12, (ftnlen)4); if (*m > *k) { /* W := W + C1**H * V1 */ i__1 = *m - *k; zgemm_((char *)"Conjugate transpose", (char *)"No transpose", n, k, &i__1, &c_b1, &c__[c_offset], ldc, &v[v_offset], ldv, & c_b1, &work[work_offset], ldwork, (ftnlen)19, ( ftnlen)12); } /* W := W * T**H or W * T */ ztrmm_((char *)"Right", (char *)"Lower", transt, (char *)"Non-unit", n, k, &c_b1, &t[ t_offset], ldt, &work[work_offset], ldwork, (ftnlen)5, (ftnlen)5, (ftnlen)1, (ftnlen)8); /* C := C - V * W**H */ if (*m > *k) { /* C1 := C1 - V1 * W**H */ i__1 = *m - *k; z__1.r = -1., z__1.i = -0.; zgemm_((char *)"No transpose", (char *)"Conjugate transpose", &i__1, n, k, &z__1, &v[v_offset], ldv, &work[work_offset], ldwork, &c_b1, &c__[c_offset], ldc, (ftnlen)12, ( ftnlen)19); } /* W := W * V2**H */ ztrmm_((char *)"Right", (char *)"Upper", (char *)"Conjugate transpose", (char *)"Unit", n, k, &c_b1, &v[*m - *k + 1 + v_dim1], ldv, &work[ work_offset], ldwork, (ftnlen)5, (ftnlen)5, (ftnlen) 19, (ftnlen)4); /* C2 := C2 - W**H */ i__1 = *k; for (j = 1; j <= i__1; ++j) { i__2 = *n; for (i__ = 1; i__ <= i__2; ++i__) { i__3 = *m - *k + j + i__ * c_dim1; i__4 = *m - *k + j + i__ * c_dim1; d_cnjg(&z__2, &work[i__ + j * work_dim1]); z__1.r = c__[i__4].r - z__2.r, z__1.i = c__[i__4].i - z__2.i; c__[i__3].r = z__1.r, c__[i__3].i = z__1.i; /* L80: */ } /* L90: */ } } else if (lsame_(side, (char *)"R", (ftnlen)1, (ftnlen)1)) { /* Form C * H or C * H**H where C = ( C1 C2 ) */ /* W := C * V = (C1*V1 + C2*V2) (stored in WORK) */ /* W := C2 */ i__1 = *k; for (j = 1; j <= i__1; ++j) { zcopy_(m, &c__[(*n - *k + j) * c_dim1 + 1], &c__1, &work[ j * work_dim1 + 1], &c__1); /* L100: */ } /* W := W * V2 */ ztrmm_((char *)"Right", (char *)"Upper", (char *)"No transpose", (char *)"Unit", m, k, &c_b1, &v[*n - *k + 1 + v_dim1], ldv, &work[work_offset], ldwork, (ftnlen)5, (ftnlen)5, (ftnlen)12, (ftnlen)4); if (*n > *k) { /* W := W + C1 * V1 */ i__1 = *n - *k; zgemm_((char *)"No transpose", (char *)"No transpose", m, k, &i__1, &c_b1, &c__[c_offset], ldc, &v[v_offset], ldv, &c_b1, & work[work_offset], ldwork, (ftnlen)12, (ftnlen)12) ; } /* W := W * T or W * T**H */ ztrmm_((char *)"Right", (char *)"Lower", trans, (char *)"Non-unit", m, k, &c_b1, &t[ t_offset], ldt, &work[work_offset], ldwork, (ftnlen)5, (ftnlen)5, (ftnlen)1, (ftnlen)8); /* C := C - W * V**H */ if (*n > *k) { /* C1 := C1 - W * V1**H */ i__1 = *n - *k; z__1.r = -1., z__1.i = -0.; zgemm_((char *)"No transpose", (char *)"Conjugate transpose", m, &i__1, k, &z__1, &work[work_offset], ldwork, &v[v_offset], ldv, &c_b1, &c__[c_offset], ldc, (ftnlen)12, ( ftnlen)19); } /* W := W * V2**H */ ztrmm_((char *)"Right", (char *)"Upper", (char *)"Conjugate transpose", (char *)"Unit", m, k, &c_b1, &v[*n - *k + 1 + v_dim1], ldv, &work[ work_offset], ldwork, (ftnlen)5, (ftnlen)5, (ftnlen) 19, (ftnlen)4); /* C2 := C2 - W */ i__1 = *k; for (j = 1; j <= i__1; ++j) { i__2 = *m; for (i__ = 1; i__ <= i__2; ++i__) { i__3 = i__ + (*n - *k + j) * c_dim1; i__4 = i__ + (*n - *k + j) * c_dim1; i__5 = i__ + j * work_dim1; z__1.r = c__[i__4].r - work[i__5].r, z__1.i = c__[ i__4].i - work[i__5].i; c__[i__3].r = z__1.r, c__[i__3].i = z__1.i; /* L110: */ } /* L120: */ } } } } else if (lsame_(storev, (char *)"R", (ftnlen)1, (ftnlen)1)) { if (lsame_(direct, (char *)"F", (ftnlen)1, (ftnlen)1)) { /* Let V = ( V1 V2 ) (V1: first K columns) */ /* where V1 is unit upper triangular. */ if (lsame_(side, (char *)"L", (ftnlen)1, (ftnlen)1)) { /* Form H * C or H**H * C where C = ( C1 ) */ /* ( C2 ) */ /* W := C**H * V**H = (C1**H * V1**H + C2**H * V2**H) (stored in WORK) */ /* W := C1**H */ i__1 = *k; for (j = 1; j <= i__1; ++j) { zcopy_(n, &c__[j + c_dim1], ldc, &work[j * work_dim1 + 1], &c__1); zlacgv_(n, &work[j * work_dim1 + 1], &c__1); /* L130: */ } /* W := W * V1**H */ ztrmm_((char *)"Right", (char *)"Upper", (char *)"Conjugate transpose", (char *)"Unit", n, k, &c_b1, &v[v_offset], ldv, &work[work_offset], ldwork, (ftnlen)5, (ftnlen)5, (ftnlen)19, (ftnlen)4); if (*m > *k) { /* W := W + C2**H * V2**H */ i__1 = *m - *k; zgemm_((char *)"Conjugate transpose", (char *)"Conjugate transpose", n, k, &i__1, &c_b1, &c__[*k + 1 + c_dim1], ldc, &v[(*k + 1) * v_dim1 + 1], ldv, &c_b1, &work[work_offset] , ldwork, (ftnlen)19, (ftnlen)19); } /* W := W * T**H or W * T */ ztrmm_((char *)"Right", (char *)"Upper", transt, (char *)"Non-unit", n, k, &c_b1, &t[ t_offset], ldt, &work[work_offset], ldwork, (ftnlen)5, (ftnlen)5, (ftnlen)1, (ftnlen)8); /* C := C - V**H * W**H */ if (*m > *k) { /* C2 := C2 - V2**H * W**H */ i__1 = *m - *k; z__1.r = -1., z__1.i = -0.; zgemm_((char *)"Conjugate transpose", (char *)"Conjugate transpose", & i__1, n, k, &z__1, &v[(*k + 1) * v_dim1 + 1], ldv, &work[work_offset], ldwork, &c_b1, &c__[*k + 1 + c_dim1], ldc, (ftnlen)19, (ftnlen)19); } /* W := W * V1 */ ztrmm_((char *)"Right", (char *)"Upper", (char *)"No transpose", (char *)"Unit", n, k, &c_b1, &v[v_offset], ldv, &work[work_offset], ldwork, ( ftnlen)5, (ftnlen)5, (ftnlen)12, (ftnlen)4); /* C1 := C1 - W**H */ i__1 = *k; for (j = 1; j <= i__1; ++j) { i__2 = *n; for (i__ = 1; i__ <= i__2; ++i__) { i__3 = j + i__ * c_dim1; i__4 = j + i__ * c_dim1; d_cnjg(&z__2, &work[i__ + j * work_dim1]); z__1.r = c__[i__4].r - z__2.r, z__1.i = c__[i__4].i - z__2.i; c__[i__3].r = z__1.r, c__[i__3].i = z__1.i; /* L140: */ } /* L150: */ } } else if (lsame_(side, (char *)"R", (ftnlen)1, (ftnlen)1)) { /* Form C * H or C * H**H where C = ( C1 C2 ) */ /* W := C * V**H = (C1*V1**H + C2*V2**H) (stored in WORK) */ /* W := C1 */ i__1 = *k; for (j = 1; j <= i__1; ++j) { zcopy_(m, &c__[j * c_dim1 + 1], &c__1, &work[j * work_dim1 + 1], &c__1); /* L160: */ } /* W := W * V1**H */ ztrmm_((char *)"Right", (char *)"Upper", (char *)"Conjugate transpose", (char *)"Unit", m, k, &c_b1, &v[v_offset], ldv, &work[work_offset], ldwork, (ftnlen)5, (ftnlen)5, (ftnlen)19, (ftnlen)4); if (*n > *k) { /* W := W + C2 * V2**H */ i__1 = *n - *k; zgemm_((char *)"No transpose", (char *)"Conjugate transpose", m, k, &i__1, &c_b1, &c__[(*k + 1) * c_dim1 + 1], ldc, &v[(*k + 1) * v_dim1 + 1], ldv, &c_b1, &work[work_offset] , ldwork, (ftnlen)12, (ftnlen)19); } /* W := W * T or W * T**H */ ztrmm_((char *)"Right", (char *)"Upper", trans, (char *)"Non-unit", m, k, &c_b1, &t[ t_offset], ldt, &work[work_offset], ldwork, (ftnlen)5, (ftnlen)5, (ftnlen)1, (ftnlen)8); /* C := C - W * V */ if (*n > *k) { /* C2 := C2 - W * V2 */ i__1 = *n - *k; z__1.r = -1., z__1.i = -0.; zgemm_((char *)"No transpose", (char *)"No transpose", m, &i__1, k, &z__1, &work[work_offset], ldwork, &v[(*k + 1) * v_dim1 + 1], ldv, &c_b1, &c__[(*k + 1) * c_dim1 + 1], ldc, (ftnlen)12, (ftnlen)12); } /* W := W * V1 */ ztrmm_((char *)"Right", (char *)"Upper", (char *)"No transpose", (char *)"Unit", m, k, &c_b1, &v[v_offset], ldv, &work[work_offset], ldwork, ( ftnlen)5, (ftnlen)5, (ftnlen)12, (ftnlen)4); /* C1 := C1 - W */ i__1 = *k; for (j = 1; j <= i__1; ++j) { i__2 = *m; for (i__ = 1; i__ <= i__2; ++i__) { i__3 = i__ + j * c_dim1; i__4 = i__ + j * c_dim1; i__5 = i__ + j * work_dim1; z__1.r = c__[i__4].r - work[i__5].r, z__1.i = c__[ i__4].i - work[i__5].i; c__[i__3].r = z__1.r, c__[i__3].i = z__1.i; /* L170: */ } /* L180: */ } } } else { /* Let V = ( V1 V2 ) (V2: last K columns) */ /* where V2 is unit lower triangular. */ if (lsame_(side, (char *)"L", (ftnlen)1, (ftnlen)1)) { /* Form H * C or H**H * C where C = ( C1 ) */ /* ( C2 ) */ /* W := C**H * V**H = (C1**H * V1**H + C2**H * V2**H) (stored in WORK) */ /* W := C2**H */ i__1 = *k; for (j = 1; j <= i__1; ++j) { zcopy_(n, &c__[*m - *k + j + c_dim1], ldc, &work[j * work_dim1 + 1], &c__1); zlacgv_(n, &work[j * work_dim1 + 1], &c__1); /* L190: */ } /* W := W * V2**H */ ztrmm_((char *)"Right", (char *)"Lower", (char *)"Conjugate transpose", (char *)"Unit", n, k, &c_b1, &v[(*m - *k + 1) * v_dim1 + 1], ldv, &work[ work_offset], ldwork, (ftnlen)5, (ftnlen)5, (ftnlen) 19, (ftnlen)4); if (*m > *k) { /* W := W + C1**H * V1**H */ i__1 = *m - *k; zgemm_((char *)"Conjugate transpose", (char *)"Conjugate transpose", n, k, &i__1, &c_b1, &c__[c_offset], ldc, &v[v_offset], ldv, &c_b1, &work[work_offset], ldwork, (ftnlen) 19, (ftnlen)19); } /* W := W * T**H or W * T */ ztrmm_((char *)"Right", (char *)"Lower", transt, (char *)"Non-unit", n, k, &c_b1, &t[ t_offset], ldt, &work[work_offset], ldwork, (ftnlen)5, (ftnlen)5, (ftnlen)1, (ftnlen)8); /* C := C - V**H * W**H */ if (*m > *k) { /* C1 := C1 - V1**H * W**H */ i__1 = *m - *k; z__1.r = -1., z__1.i = -0.; zgemm_((char *)"Conjugate transpose", (char *)"Conjugate transpose", & i__1, n, k, &z__1, &v[v_offset], ldv, &work[ work_offset], ldwork, &c_b1, &c__[c_offset], ldc, (ftnlen)19, (ftnlen)19); } /* W := W * V2 */ ztrmm_((char *)"Right", (char *)"Lower", (char *)"No transpose", (char *)"Unit", n, k, &c_b1, &v[(*m - *k + 1) * v_dim1 + 1], ldv, &work[ work_offset], ldwork, (ftnlen)5, (ftnlen)5, (ftnlen) 12, (ftnlen)4); /* C2 := C2 - W**H */ i__1 = *k; for (j = 1; j <= i__1; ++j) { i__2 = *n; for (i__ = 1; i__ <= i__2; ++i__) { i__3 = *m - *k + j + i__ * c_dim1; i__4 = *m - *k + j + i__ * c_dim1; d_cnjg(&z__2, &work[i__ + j * work_dim1]); z__1.r = c__[i__4].r - z__2.r, z__1.i = c__[i__4].i - z__2.i; c__[i__3].r = z__1.r, c__[i__3].i = z__1.i; /* L200: */ } /* L210: */ } } else if (lsame_(side, (char *)"R", (ftnlen)1, (ftnlen)1)) { /* Form C * H or C * H**H where C = ( C1 C2 ) */ /* W := C * V**H = (C1*V1**H + C2*V2**H) (stored in WORK) */ /* W := C2 */ i__1 = *k; for (j = 1; j <= i__1; ++j) { zcopy_(m, &c__[(*n - *k + j) * c_dim1 + 1], &c__1, &work[ j * work_dim1 + 1], &c__1); /* L220: */ } /* W := W * V2**H */ ztrmm_((char *)"Right", (char *)"Lower", (char *)"Conjugate transpose", (char *)"Unit", m, k, &c_b1, &v[(*n - *k + 1) * v_dim1 + 1], ldv, &work[ work_offset], ldwork, (ftnlen)5, (ftnlen)5, (ftnlen) 19, (ftnlen)4); if (*n > *k) { /* W := W + C1 * V1**H */ i__1 = *n - *k; zgemm_((char *)"No transpose", (char *)"Conjugate transpose", m, k, &i__1, &c_b1, &c__[c_offset], ldc, &v[v_offset], ldv, & c_b1, &work[work_offset], ldwork, (ftnlen)12, ( ftnlen)19); } /* W := W * T or W * T**H */ ztrmm_((char *)"Right", (char *)"Lower", trans, (char *)"Non-unit", m, k, &c_b1, &t[ t_offset], ldt, &work[work_offset], ldwork, (ftnlen)5, (ftnlen)5, (ftnlen)1, (ftnlen)8); /* C := C - W * V */ if (*n > *k) { /* C1 := C1 - W * V1 */ i__1 = *n - *k; z__1.r = -1., z__1.i = -0.; zgemm_((char *)"No transpose", (char *)"No transpose", m, &i__1, k, &z__1, &work[work_offset], ldwork, &v[v_offset], ldv, & c_b1, &c__[c_offset], ldc, (ftnlen)12, (ftnlen)12) ; } /* W := W * V2 */ ztrmm_((char *)"Right", (char *)"Lower", (char *)"No transpose", (char *)"Unit", m, k, &c_b1, &v[(*n - *k + 1) * v_dim1 + 1], ldv, &work[ work_offset], ldwork, (ftnlen)5, (ftnlen)5, (ftnlen) 12, (ftnlen)4); /* C1 := C1 - W */ i__1 = *k; for (j = 1; j <= i__1; ++j) { i__2 = *m; for (i__ = 1; i__ <= i__2; ++i__) { i__3 = i__ + (*n - *k + j) * c_dim1; i__4 = i__ + (*n - *k + j) * c_dim1; i__5 = i__ + j * work_dim1; z__1.r = c__[i__4].r - work[i__5].r, z__1.i = c__[ i__4].i - work[i__5].i; c__[i__3].r = z__1.r, c__[i__3].i = z__1.i; /* L230: */ } /* L240: */ } } } } return 0; /* End of ZLARFB */ } /* zlarfb_ */ #ifdef __cplusplus } #endif