/* static/zlarft.f -- translated by f2c (version 20200916). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #ifdef __cplusplus extern "C" { #endif #include "lmp_f2c.h" /* Table of constant values */ static doublecomplex c_b1 = {1.,0.}; static integer c__1 = 1; /* > \brief \b ZLARFT forms the triangular factor T of a block reflector H = I - vtvH */ /* =========== DOCUMENTATION =========== */ /* Online html documentation available at */ /* http://www.netlib.org/lapack/explore-html/ */ /* > \htmlonly */ /* > Download ZLARFT + dependencies */ /* > */ /* > [TGZ] */ /* > */ /* > [ZIP] */ /* > */ /* > [TXT] */ /* > \endhtmlonly */ /* Definition: */ /* =========== */ /* SUBROUTINE ZLARFT( DIRECT, STOREV, N, K, V, LDV, TAU, T, LDT ) */ /* .. Scalar Arguments .. */ /* CHARACTER DIRECT, STOREV */ /* INTEGER K, LDT, LDV, N */ /* .. */ /* .. Array Arguments .. */ /* COMPLEX*16 T( LDT, * ), TAU( * ), V( LDV, * ) */ /* .. */ /* > \par Purpose: */ /* ============= */ /* > */ /* > \verbatim */ /* > */ /* > ZLARFT forms the triangular factor T of a complex block reflector H */ /* > of order n, which is defined as a product of k elementary reflectors. */ /* > */ /* > If DIRECT = 'F', H = H(1) H(2) . . . H(k) and T is upper triangular; */ /* > */ /* > If DIRECT = 'B', H = H(k) . . . H(2) H(1) and T is lower triangular. */ /* > */ /* > If STOREV = 'C', the vector which defines the elementary reflector */ /* > H(i) is stored in the i-th column of the array V, and */ /* > */ /* > H = I - V * T * V**H */ /* > */ /* > If STOREV = 'R', the vector which defines the elementary reflector */ /* > H(i) is stored in the i-th row of the array V, and */ /* > */ /* > H = I - V**H * T * V */ /* > \endverbatim */ /* Arguments: */ /* ========== */ /* > \param[in] DIRECT */ /* > \verbatim */ /* > DIRECT is CHARACTER*1 */ /* > Specifies the order in which the elementary reflectors are */ /* > multiplied to form the block reflector: */ /* > = 'F': H = H(1) H(2) . . . H(k) (Forward) */ /* > = 'B': H = H(k) . . . H(2) H(1) (Backward) */ /* > \endverbatim */ /* > */ /* > \param[in] STOREV */ /* > \verbatim */ /* > STOREV is CHARACTER*1 */ /* > Specifies how the vectors which define the elementary */ /* > reflectors are stored (see also Further Details): */ /* > = 'C': columnwise */ /* > = 'R': rowwise */ /* > \endverbatim */ /* > */ /* > \param[in] N */ /* > \verbatim */ /* > N is INTEGER */ /* > The order of the block reflector H. N >= 0. */ /* > \endverbatim */ /* > */ /* > \param[in] K */ /* > \verbatim */ /* > K is INTEGER */ /* > The order of the triangular factor T (= the number of */ /* > elementary reflectors). K >= 1. */ /* > \endverbatim */ /* > */ /* > \param[in] V */ /* > \verbatim */ /* > V is COMPLEX*16 array, dimension */ /* > (LDV,K) if STOREV = 'C' */ /* > (LDV,N) if STOREV = 'R' */ /* > The matrix V. See further details. */ /* > \endverbatim */ /* > */ /* > \param[in] LDV */ /* > \verbatim */ /* > LDV is INTEGER */ /* > The leading dimension of the array V. */ /* > If STOREV = 'C', LDV >= max(1,N); if STOREV = 'R', LDV >= K. */ /* > \endverbatim */ /* > */ /* > \param[in] TAU */ /* > \verbatim */ /* > TAU is COMPLEX*16 array, dimension (K) */ /* > TAU(i) must contain the scalar factor of the elementary */ /* > reflector H(i). */ /* > \endverbatim */ /* > */ /* > \param[out] T */ /* > \verbatim */ /* > T is COMPLEX*16 array, dimension (LDT,K) */ /* > The k by k triangular factor T of the block reflector. */ /* > If DIRECT = 'F', T is upper triangular; if DIRECT = 'B', T is */ /* > lower triangular. The rest of the array is not used. */ /* > \endverbatim */ /* > */ /* > \param[in] LDT */ /* > \verbatim */ /* > LDT is INTEGER */ /* > The leading dimension of the array T. LDT >= K. */ /* > \endverbatim */ /* Authors: */ /* ======== */ /* > \author Univ. of Tennessee */ /* > \author Univ. of California Berkeley */ /* > \author Univ. of Colorado Denver */ /* > \author NAG Ltd. */ /* > \ingroup complex16OTHERauxiliary */ /* > \par Further Details: */ /* ===================== */ /* > */ /* > \verbatim */ /* > */ /* > The shape of the matrix V and the storage of the vectors which define */ /* > the H(i) is best illustrated by the following example with n = 5 and */ /* > k = 3. The elements equal to 1 are not stored. */ /* > */ /* > DIRECT = 'F' and STOREV = 'C': DIRECT = 'F' and STOREV = 'R': */ /* > */ /* > V = ( 1 ) V = ( 1 v1 v1 v1 v1 ) */ /* > ( v1 1 ) ( 1 v2 v2 v2 ) */ /* > ( v1 v2 1 ) ( 1 v3 v3 ) */ /* > ( v1 v2 v3 ) */ /* > ( v1 v2 v3 ) */ /* > */ /* > DIRECT = 'B' and STOREV = 'C': DIRECT = 'B' and STOREV = 'R': */ /* > */ /* > V = ( v1 v2 v3 ) V = ( v1 v1 1 ) */ /* > ( v1 v2 v3 ) ( v2 v2 v2 1 ) */ /* > ( 1 v2 v3 ) ( v3 v3 v3 v3 1 ) */ /* > ( 1 v3 ) */ /* > ( 1 ) */ /* > \endverbatim */ /* > */ /* ===================================================================== */ /* Subroutine */ int zlarft_(char *direct, char *storev, integer *n, integer * k, doublecomplex *v, integer *ldv, doublecomplex *tau, doublecomplex * t, integer *ldt, ftnlen direct_len, ftnlen storev_len) { /* System generated locals */ integer t_dim1, t_offset, v_dim1, v_offset, i__1, i__2, i__3, i__4, i__5; doublecomplex z__1, z__2, z__3; /* Builtin functions */ void d_cnjg(doublecomplex *, doublecomplex *); /* Local variables */ integer i__, j, prevlastv; extern logical lsame_(char *, char *, ftnlen, ftnlen); extern /* Subroutine */ int zgemm_(char *, char *, integer *, integer *, integer *, doublecomplex *, doublecomplex *, integer *, doublecomplex *, integer *, doublecomplex *, doublecomplex *, integer *, ftnlen, ftnlen), zgemv_(char *, integer *, integer *, doublecomplex *, doublecomplex *, integer *, doublecomplex *, integer *, doublecomplex *, doublecomplex *, integer *, ftnlen); integer lastv; extern /* Subroutine */ int ztrmv_(char *, char *, char *, integer *, doublecomplex *, integer *, doublecomplex *, integer *, ftnlen, ftnlen, ftnlen); /* -- LAPACK auxiliary routine -- */ /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */ /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Quick return if possible */ /* Parameter adjustments */ v_dim1 = *ldv; v_offset = 1 + v_dim1; v -= v_offset; --tau; t_dim1 = *ldt; t_offset = 1 + t_dim1; t -= t_offset; /* Function Body */ if (*n == 0) { return 0; } if (lsame_(direct, (char *)"F", (ftnlen)1, (ftnlen)1)) { prevlastv = *n; i__1 = *k; for (i__ = 1; i__ <= i__1; ++i__) { prevlastv = max(prevlastv,i__); i__2 = i__; if (tau[i__2].r == 0. && tau[i__2].i == 0.) { /* H(i) = I */ i__2 = i__; for (j = 1; j <= i__2; ++j) { i__3 = j + i__ * t_dim1; t[i__3].r = 0., t[i__3].i = 0.; } } else { /* general case */ if (lsame_(storev, (char *)"C", (ftnlen)1, (ftnlen)1)) { /* Skip any trailing zeros. */ i__2 = i__ + 1; for (lastv = *n; lastv >= i__2; --lastv) { i__3 = lastv + i__ * v_dim1; if (v[i__3].r != 0. || v[i__3].i != 0.) { goto L220; } } L220: i__2 = i__ - 1; for (j = 1; j <= i__2; ++j) { i__3 = j + i__ * t_dim1; i__4 = i__; z__2.r = -tau[i__4].r, z__2.i = -tau[i__4].i; d_cnjg(&z__3, &v[i__ + j * v_dim1]); z__1.r = z__2.r * z__3.r - z__2.i * z__3.i, z__1.i = z__2.r * z__3.i + z__2.i * z__3.r; t[i__3].r = z__1.r, t[i__3].i = z__1.i; } j = min(lastv,prevlastv); /* T(1:i-1,i) := - tau(i) * V(i:j,1:i-1)**H * V(i:j,i) */ i__2 = j - i__; i__3 = i__ - 1; i__4 = i__; z__1.r = -tau[i__4].r, z__1.i = -tau[i__4].i; zgemv_((char *)"Conjugate transpose", &i__2, &i__3, &z__1, &v[i__ + 1 + v_dim1], ldv, &v[i__ + 1 + i__ * v_dim1], & c__1, &c_b1, &t[i__ * t_dim1 + 1], &c__1, (ftnlen) 19); } else { /* Skip any trailing zeros. */ i__2 = i__ + 1; for (lastv = *n; lastv >= i__2; --lastv) { i__3 = i__ + lastv * v_dim1; if (v[i__3].r != 0. || v[i__3].i != 0.) { goto L236; } } L236: i__2 = i__ - 1; for (j = 1; j <= i__2; ++j) { i__3 = j + i__ * t_dim1; i__4 = i__; z__2.r = -tau[i__4].r, z__2.i = -tau[i__4].i; i__5 = j + i__ * v_dim1; z__1.r = z__2.r * v[i__5].r - z__2.i * v[i__5].i, z__1.i = z__2.r * v[i__5].i + z__2.i * v[i__5] .r; t[i__3].r = z__1.r, t[i__3].i = z__1.i; } j = min(lastv,prevlastv); /* T(1:i-1,i) := - tau(i) * V(1:i-1,i:j) * V(i,i:j)**H */ i__2 = i__ - 1; i__3 = j - i__; i__4 = i__; z__1.r = -tau[i__4].r, z__1.i = -tau[i__4].i; zgemm_((char *)"N", (char *)"C", &i__2, &c__1, &i__3, &z__1, &v[(i__ + 1) * v_dim1 + 1], ldv, &v[i__ + (i__ + 1) * v_dim1], ldv, &c_b1, &t[i__ * t_dim1 + 1], ldt, (ftnlen)1, (ftnlen)1); } /* T(1:i-1,i) := T(1:i-1,1:i-1) * T(1:i-1,i) */ i__2 = i__ - 1; ztrmv_((char *)"Upper", (char *)"No transpose", (char *)"Non-unit", &i__2, &t[ t_offset], ldt, &t[i__ * t_dim1 + 1], &c__1, (ftnlen) 5, (ftnlen)12, (ftnlen)8); i__2 = i__ + i__ * t_dim1; i__3 = i__; t[i__2].r = tau[i__3].r, t[i__2].i = tau[i__3].i; if (i__ > 1) { prevlastv = max(prevlastv,lastv); } else { prevlastv = lastv; } } } } else { prevlastv = 1; for (i__ = *k; i__ >= 1; --i__) { i__1 = i__; if (tau[i__1].r == 0. && tau[i__1].i == 0.) { /* H(i) = I */ i__1 = *k; for (j = i__; j <= i__1; ++j) { i__2 = j + i__ * t_dim1; t[i__2].r = 0., t[i__2].i = 0.; } } else { /* general case */ if (i__ < *k) { if (lsame_(storev, (char *)"C", (ftnlen)1, (ftnlen)1)) { /* Skip any leading zeros. */ i__1 = i__ - 1; for (lastv = 1; lastv <= i__1; ++lastv) { i__2 = lastv + i__ * v_dim1; if (v[i__2].r != 0. || v[i__2].i != 0.) { goto L281; } } L281: i__1 = *k; for (j = i__ + 1; j <= i__1; ++j) { i__2 = j + i__ * t_dim1; i__3 = i__; z__2.r = -tau[i__3].r, z__2.i = -tau[i__3].i; d_cnjg(&z__3, &v[*n - *k + i__ + j * v_dim1]); z__1.r = z__2.r * z__3.r - z__2.i * z__3.i, z__1.i = z__2.r * z__3.i + z__2.i * z__3.r; t[i__2].r = z__1.r, t[i__2].i = z__1.i; } j = max(lastv,prevlastv); /* T(i+1:k,i) = -tau(i) * V(j:n-k+i,i+1:k)**H * V(j:n-k+i,i) */ i__1 = *n - *k + i__ - j; i__2 = *k - i__; i__3 = i__; z__1.r = -tau[i__3].r, z__1.i = -tau[i__3].i; zgemv_((char *)"Conjugate transpose", &i__1, &i__2, &z__1, &v[ j + (i__ + 1) * v_dim1], ldv, &v[j + i__ * v_dim1], &c__1, &c_b1, &t[i__ + 1 + i__ * t_dim1], &c__1, (ftnlen)19); } else { /* Skip any leading zeros. */ i__1 = i__ - 1; for (lastv = 1; lastv <= i__1; ++lastv) { i__2 = i__ + lastv * v_dim1; if (v[i__2].r != 0. || v[i__2].i != 0.) { goto L297; } } L297: i__1 = *k; for (j = i__ + 1; j <= i__1; ++j) { i__2 = j + i__ * t_dim1; i__3 = i__; z__2.r = -tau[i__3].r, z__2.i = -tau[i__3].i; i__4 = j + (*n - *k + i__) * v_dim1; z__1.r = z__2.r * v[i__4].r - z__2.i * v[i__4].i, z__1.i = z__2.r * v[i__4].i + z__2.i * v[ i__4].r; t[i__2].r = z__1.r, t[i__2].i = z__1.i; } j = max(lastv,prevlastv); /* T(i+1:k,i) = -tau(i) * V(i+1:k,j:n-k+i) * V(i,j:n-k+i)**H */ i__1 = *k - i__; i__2 = *n - *k + i__ - j; i__3 = i__; z__1.r = -tau[i__3].r, z__1.i = -tau[i__3].i; zgemm_((char *)"N", (char *)"C", &i__1, &c__1, &i__2, &z__1, &v[i__ + 1 + j * v_dim1], ldv, &v[i__ + j * v_dim1], ldv, &c_b1, &t[i__ + 1 + i__ * t_dim1], ldt, ( ftnlen)1, (ftnlen)1); } /* T(i+1:k,i) := T(i+1:k,i+1:k) * T(i+1:k,i) */ i__1 = *k - i__; ztrmv_((char *)"Lower", (char *)"No transpose", (char *)"Non-unit", &i__1, &t[i__ + 1 + (i__ + 1) * t_dim1], ldt, &t[i__ + 1 + i__ * t_dim1], &c__1, (ftnlen)5, (ftnlen)12, (ftnlen)8) ; if (i__ > 1) { prevlastv = min(prevlastv,lastv); } else { prevlastv = lastv; } } i__1 = i__ + i__ * t_dim1; i__2 = i__; t[i__1].r = tau[i__2].r, t[i__1].i = tau[i__2].i; } } } return 0; /* End of ZLARFT */ } /* zlarft_ */ #ifdef __cplusplus } #endif