/* fortran/zlasr.f -- translated by f2c (version 20200916). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #ifdef __cplusplus extern "C" { #endif #include "lmp_f2c.h" /* > \brief \b ZLASR applies a sequence of plane rotations to a general rectangular matrix. */ /* =========== DOCUMENTATION =========== */ /* Online html documentation available at */ /* http://www.netlib.org/lapack/explore-html/ */ /* > \htmlonly */ /* > Download ZLASR + dependencies */ /* > */ /* > [TGZ] */ /* > */ /* > [ZIP] */ /* > */ /* > [TXT] */ /* > \endhtmlonly */ /* Definition: */ /* =========== */ /* SUBROUTINE ZLASR( SIDE, PIVOT, DIRECT, M, N, C, S, A, LDA ) */ /* .. Scalar Arguments .. */ /* CHARACTER DIRECT, PIVOT, SIDE */ /* INTEGER LDA, M, N */ /* .. */ /* .. Array Arguments .. */ /* DOUBLE PRECISION C( * ), S( * ) */ /* COMPLEX*16 A( LDA, * ) */ /* .. */ /* > \par Purpose: */ /* ============= */ /* > */ /* > \verbatim */ /* > */ /* > ZLASR applies a sequence of real plane rotations to a complex matrix */ /* > A, from either the left or the right. */ /* > */ /* > When SIDE = 'L', the transformation takes the form */ /* > */ /* > A := P*A */ /* > */ /* > and when SIDE = 'R', the transformation takes the form */ /* > */ /* > A := A*P**T */ /* > */ /* > where P is an orthogonal matrix consisting of a sequence of z plane */ /* > rotations, with z = M when SIDE = 'L' and z = N when SIDE = 'R', */ /* > and P**T is the transpose of P. */ /* > */ /* > When DIRECT = 'F' (Forward sequence), then */ /* > */ /* > P = P(z-1) * ... * P(2) * P(1) */ /* > */ /* > and when DIRECT = 'B' (Backward sequence), then */ /* > */ /* > P = P(1) * P(2) * ... * P(z-1) */ /* > */ /* > where P(k) is a plane rotation matrix defined by the 2-by-2 rotation */ /* > */ /* > R(k) = ( c(k) s(k) ) */ /* > = ( -s(k) c(k) ). */ /* > */ /* > When PIVOT = 'V' (Variable pivot), the rotation is performed */ /* > for the plane (k,k+1), i.e., P(k) has the form */ /* > */ /* > P(k) = ( 1 ) */ /* > ( ... ) */ /* > ( 1 ) */ /* > ( c(k) s(k) ) */ /* > ( -s(k) c(k) ) */ /* > ( 1 ) */ /* > ( ... ) */ /* > ( 1 ) */ /* > */ /* > where R(k) appears as a rank-2 modification to the identity matrix in */ /* > rows and columns k and k+1. */ /* > */ /* > When PIVOT = 'T' (Top pivot), the rotation is performed for the */ /* > plane (1,k+1), so P(k) has the form */ /* > */ /* > P(k) = ( c(k) s(k) ) */ /* > ( 1 ) */ /* > ( ... ) */ /* > ( 1 ) */ /* > ( -s(k) c(k) ) */ /* > ( 1 ) */ /* > ( ... ) */ /* > ( 1 ) */ /* > */ /* > where R(k) appears in rows and columns 1 and k+1. */ /* > */ /* > Similarly, when PIVOT = 'B' (Bottom pivot), the rotation is */ /* > performed for the plane (k,z), giving P(k) the form */ /* > */ /* > P(k) = ( 1 ) */ /* > ( ... ) */ /* > ( 1 ) */ /* > ( c(k) s(k) ) */ /* > ( 1 ) */ /* > ( ... ) */ /* > ( 1 ) */ /* > ( -s(k) c(k) ) */ /* > */ /* > where R(k) appears in rows and columns k and z. The rotations are */ /* > performed without ever forming P(k) explicitly. */ /* > \endverbatim */ /* Arguments: */ /* ========== */ /* > \param[in] SIDE */ /* > \verbatim */ /* > SIDE is CHARACTER*1 */ /* > Specifies whether the plane rotation matrix P is applied to */ /* > A on the left or the right. */ /* > = 'L': Left, compute A := P*A */ /* > = 'R': Right, compute A:= A*P**T */ /* > \endverbatim */ /* > */ /* > \param[in] PIVOT */ /* > \verbatim */ /* > PIVOT is CHARACTER*1 */ /* > Specifies the plane for which P(k) is a plane rotation */ /* > matrix. */ /* > = 'V': Variable pivot, the plane (k,k+1) */ /* > = 'T': Top pivot, the plane (1,k+1) */ /* > = 'B': Bottom pivot, the plane (k,z) */ /* > \endverbatim */ /* > */ /* > \param[in] DIRECT */ /* > \verbatim */ /* > DIRECT is CHARACTER*1 */ /* > Specifies whether P is a forward or backward sequence of */ /* > plane rotations. */ /* > = 'F': Forward, P = P(z-1)*...*P(2)*P(1) */ /* > = 'B': Backward, P = P(1)*P(2)*...*P(z-1) */ /* > \endverbatim */ /* > */ /* > \param[in] M */ /* > \verbatim */ /* > M is INTEGER */ /* > The number of rows of the matrix A. If m <= 1, an immediate */ /* > return is effected. */ /* > \endverbatim */ /* > */ /* > \param[in] N */ /* > \verbatim */ /* > N is INTEGER */ /* > The number of columns of the matrix A. If n <= 1, an */ /* > immediate return is effected. */ /* > \endverbatim */ /* > */ /* > \param[in] C */ /* > \verbatim */ /* > C is DOUBLE PRECISION array, dimension */ /* > (M-1) if SIDE = 'L' */ /* > (N-1) if SIDE = 'R' */ /* > The cosines c(k) of the plane rotations. */ /* > \endverbatim */ /* > */ /* > \param[in] S */ /* > \verbatim */ /* > S is DOUBLE PRECISION array, dimension */ /* > (M-1) if SIDE = 'L' */ /* > (N-1) if SIDE = 'R' */ /* > The sines s(k) of the plane rotations. The 2-by-2 plane */ /* > rotation part of the matrix P(k), R(k), has the form */ /* > R(k) = ( c(k) s(k) ) */ /* > ( -s(k) c(k) ). */ /* > \endverbatim */ /* > */ /* > \param[in,out] A */ /* > \verbatim */ /* > A is COMPLEX*16 array, dimension (LDA,N) */ /* > The M-by-N matrix A. On exit, A is overwritten by P*A if */ /* > SIDE = 'R' or by A*P**T if SIDE = 'L'. */ /* > \endverbatim */ /* > */ /* > \param[in] LDA */ /* > \verbatim */ /* > LDA is INTEGER */ /* > The leading dimension of the array A. LDA >= max(1,M). */ /* > \endverbatim */ /* Authors: */ /* ======== */ /* > \author Univ. of Tennessee */ /* > \author Univ. of California Berkeley */ /* > \author Univ. of Colorado Denver */ /* > \author NAG Ltd. */ /* > \ingroup complex16OTHERauxiliary */ /* ===================================================================== */ /* Subroutine */ int zlasr_(char *side, char *pivot, char *direct, integer *m, integer *n, doublereal *c__, doublereal *s, doublecomplex *a, integer *lda, ftnlen side_len, ftnlen pivot_len, ftnlen direct_len) { /* System generated locals */ integer a_dim1, a_offset, i__1, i__2, i__3, i__4; doublecomplex z__1, z__2, z__3; /* Local variables */ integer i__, j, info; doublecomplex temp; extern logical lsame_(char *, char *, ftnlen, ftnlen); doublereal ctemp, stemp; extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen); /* -- LAPACK auxiliary routine -- */ /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */ /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Executable Statements .. */ /* Test the input parameters */ /* Parameter adjustments */ --c__; --s; a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; /* Function Body */ info = 0; if (! (lsame_(side, (char *)"L", (ftnlen)1, (ftnlen)1) || lsame_(side, (char *)"R", ( ftnlen)1, (ftnlen)1))) { info = 1; } else if (! (lsame_(pivot, (char *)"V", (ftnlen)1, (ftnlen)1) || lsame_(pivot, (char *)"T", (ftnlen)1, (ftnlen)1) || lsame_(pivot, (char *)"B", (ftnlen)1, ( ftnlen)1))) { info = 2; } else if (! (lsame_(direct, (char *)"F", (ftnlen)1, (ftnlen)1) || lsame_(direct, (char *)"B", (ftnlen)1, (ftnlen)1))) { info = 3; } else if (*m < 0) { info = 4; } else if (*n < 0) { info = 5; } else if (*lda < max(1,*m)) { info = 9; } if (info != 0) { xerbla_((char *)"ZLASR ", &info, (ftnlen)6); return 0; } /* Quick return if possible */ if (*m == 0 || *n == 0) { return 0; } if (lsame_(side, (char *)"L", (ftnlen)1, (ftnlen)1)) { /* Form P * A */ if (lsame_(pivot, (char *)"V", (ftnlen)1, (ftnlen)1)) { if (lsame_(direct, (char *)"F", (ftnlen)1, (ftnlen)1)) { i__1 = *m - 1; for (j = 1; j <= i__1; ++j) { ctemp = c__[j]; stemp = s[j]; if (ctemp != 1. || stemp != 0.) { i__2 = *n; for (i__ = 1; i__ <= i__2; ++i__) { i__3 = j + 1 + i__ * a_dim1; temp.r = a[i__3].r, temp.i = a[i__3].i; i__3 = j + 1 + i__ * a_dim1; z__2.r = ctemp * temp.r, z__2.i = ctemp * temp.i; i__4 = j + i__ * a_dim1; z__3.r = stemp * a[i__4].r, z__3.i = stemp * a[ i__4].i; z__1.r = z__2.r - z__3.r, z__1.i = z__2.i - z__3.i; a[i__3].r = z__1.r, a[i__3].i = z__1.i; i__3 = j + i__ * a_dim1; z__2.r = stemp * temp.r, z__2.i = stemp * temp.i; i__4 = j + i__ * a_dim1; z__3.r = ctemp * a[i__4].r, z__3.i = ctemp * a[ i__4].i; z__1.r = z__2.r + z__3.r, z__1.i = z__2.i + z__3.i; a[i__3].r = z__1.r, a[i__3].i = z__1.i; /* L10: */ } } /* L20: */ } } else if (lsame_(direct, (char *)"B", (ftnlen)1, (ftnlen)1)) { for (j = *m - 1; j >= 1; --j) { ctemp = c__[j]; stemp = s[j]; if (ctemp != 1. || stemp != 0.) { i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { i__2 = j + 1 + i__ * a_dim1; temp.r = a[i__2].r, temp.i = a[i__2].i; i__2 = j + 1 + i__ * a_dim1; z__2.r = ctemp * temp.r, z__2.i = ctemp * temp.i; i__3 = j + i__ * a_dim1; z__3.r = stemp * a[i__3].r, z__3.i = stemp * a[ i__3].i; z__1.r = z__2.r - z__3.r, z__1.i = z__2.i - z__3.i; a[i__2].r = z__1.r, a[i__2].i = z__1.i; i__2 = j + i__ * a_dim1; z__2.r = stemp * temp.r, z__2.i = stemp * temp.i; i__3 = j + i__ * a_dim1; z__3.r = ctemp * a[i__3].r, z__3.i = ctemp * a[ i__3].i; z__1.r = z__2.r + z__3.r, z__1.i = z__2.i + z__3.i; a[i__2].r = z__1.r, a[i__2].i = z__1.i; /* L30: */ } } /* L40: */ } } } else if (lsame_(pivot, (char *)"T", (ftnlen)1, (ftnlen)1)) { if (lsame_(direct, (char *)"F", (ftnlen)1, (ftnlen)1)) { i__1 = *m; for (j = 2; j <= i__1; ++j) { ctemp = c__[j - 1]; stemp = s[j - 1]; if (ctemp != 1. || stemp != 0.) { i__2 = *n; for (i__ = 1; i__ <= i__2; ++i__) { i__3 = j + i__ * a_dim1; temp.r = a[i__3].r, temp.i = a[i__3].i; i__3 = j + i__ * a_dim1; z__2.r = ctemp * temp.r, z__2.i = ctemp * temp.i; i__4 = i__ * a_dim1 + 1; z__3.r = stemp * a[i__4].r, z__3.i = stemp * a[ i__4].i; z__1.r = z__2.r - z__3.r, z__1.i = z__2.i - z__3.i; a[i__3].r = z__1.r, a[i__3].i = z__1.i; i__3 = i__ * a_dim1 + 1; z__2.r = stemp * temp.r, z__2.i = stemp * temp.i; i__4 = i__ * a_dim1 + 1; z__3.r = ctemp * a[i__4].r, z__3.i = ctemp * a[ i__4].i; z__1.r = z__2.r + z__3.r, z__1.i = z__2.i + z__3.i; a[i__3].r = z__1.r, a[i__3].i = z__1.i; /* L50: */ } } /* L60: */ } } else if (lsame_(direct, (char *)"B", (ftnlen)1, (ftnlen)1)) { for (j = *m; j >= 2; --j) { ctemp = c__[j - 1]; stemp = s[j - 1]; if (ctemp != 1. || stemp != 0.) { i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { i__2 = j + i__ * a_dim1; temp.r = a[i__2].r, temp.i = a[i__2].i; i__2 = j + i__ * a_dim1; z__2.r = ctemp * temp.r, z__2.i = ctemp * temp.i; i__3 = i__ * a_dim1 + 1; z__3.r = stemp * a[i__3].r, z__3.i = stemp * a[ i__3].i; z__1.r = z__2.r - z__3.r, z__1.i = z__2.i - z__3.i; a[i__2].r = z__1.r, a[i__2].i = z__1.i; i__2 = i__ * a_dim1 + 1; z__2.r = stemp * temp.r, z__2.i = stemp * temp.i; i__3 = i__ * a_dim1 + 1; z__3.r = ctemp * a[i__3].r, z__3.i = ctemp * a[ i__3].i; z__1.r = z__2.r + z__3.r, z__1.i = z__2.i + z__3.i; a[i__2].r = z__1.r, a[i__2].i = z__1.i; /* L70: */ } } /* L80: */ } } } else if (lsame_(pivot, (char *)"B", (ftnlen)1, (ftnlen)1)) { if (lsame_(direct, (char *)"F", (ftnlen)1, (ftnlen)1)) { i__1 = *m - 1; for (j = 1; j <= i__1; ++j) { ctemp = c__[j]; stemp = s[j]; if (ctemp != 1. || stemp != 0.) { i__2 = *n; for (i__ = 1; i__ <= i__2; ++i__) { i__3 = j + i__ * a_dim1; temp.r = a[i__3].r, temp.i = a[i__3].i; i__3 = j + i__ * a_dim1; i__4 = *m + i__ * a_dim1; z__2.r = stemp * a[i__4].r, z__2.i = stemp * a[ i__4].i; z__3.r = ctemp * temp.r, z__3.i = ctemp * temp.i; z__1.r = z__2.r + z__3.r, z__1.i = z__2.i + z__3.i; a[i__3].r = z__1.r, a[i__3].i = z__1.i; i__3 = *m + i__ * a_dim1; i__4 = *m + i__ * a_dim1; z__2.r = ctemp * a[i__4].r, z__2.i = ctemp * a[ i__4].i; z__3.r = stemp * temp.r, z__3.i = stemp * temp.i; z__1.r = z__2.r - z__3.r, z__1.i = z__2.i - z__3.i; a[i__3].r = z__1.r, a[i__3].i = z__1.i; /* L90: */ } } /* L100: */ } } else if (lsame_(direct, (char *)"B", (ftnlen)1, (ftnlen)1)) { for (j = *m - 1; j >= 1; --j) { ctemp = c__[j]; stemp = s[j]; if (ctemp != 1. || stemp != 0.) { i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { i__2 = j + i__ * a_dim1; temp.r = a[i__2].r, temp.i = a[i__2].i; i__2 = j + i__ * a_dim1; i__3 = *m + i__ * a_dim1; z__2.r = stemp * a[i__3].r, z__2.i = stemp * a[ i__3].i; z__3.r = ctemp * temp.r, z__3.i = ctemp * temp.i; z__1.r = z__2.r + z__3.r, z__1.i = z__2.i + z__3.i; a[i__2].r = z__1.r, a[i__2].i = z__1.i; i__2 = *m + i__ * a_dim1; i__3 = *m + i__ * a_dim1; z__2.r = ctemp * a[i__3].r, z__2.i = ctemp * a[ i__3].i; z__3.r = stemp * temp.r, z__3.i = stemp * temp.i; z__1.r = z__2.r - z__3.r, z__1.i = z__2.i - z__3.i; a[i__2].r = z__1.r, a[i__2].i = z__1.i; /* L110: */ } } /* L120: */ } } } } else if (lsame_(side, (char *)"R", (ftnlen)1, (ftnlen)1)) { /* Form A * P**T */ if (lsame_(pivot, (char *)"V", (ftnlen)1, (ftnlen)1)) { if (lsame_(direct, (char *)"F", (ftnlen)1, (ftnlen)1)) { i__1 = *n - 1; for (j = 1; j <= i__1; ++j) { ctemp = c__[j]; stemp = s[j]; if (ctemp != 1. || stemp != 0.) { i__2 = *m; for (i__ = 1; i__ <= i__2; ++i__) { i__3 = i__ + (j + 1) * a_dim1; temp.r = a[i__3].r, temp.i = a[i__3].i; i__3 = i__ + (j + 1) * a_dim1; z__2.r = ctemp * temp.r, z__2.i = ctemp * temp.i; i__4 = i__ + j * a_dim1; z__3.r = stemp * a[i__4].r, z__3.i = stemp * a[ i__4].i; z__1.r = z__2.r - z__3.r, z__1.i = z__2.i - z__3.i; a[i__3].r = z__1.r, a[i__3].i = z__1.i; i__3 = i__ + j * a_dim1; z__2.r = stemp * temp.r, z__2.i = stemp * temp.i; i__4 = i__ + j * a_dim1; z__3.r = ctemp * a[i__4].r, z__3.i = ctemp * a[ i__4].i; z__1.r = z__2.r + z__3.r, z__1.i = z__2.i + z__3.i; a[i__3].r = z__1.r, a[i__3].i = z__1.i; /* L130: */ } } /* L140: */ } } else if (lsame_(direct, (char *)"B", (ftnlen)1, (ftnlen)1)) { for (j = *n - 1; j >= 1; --j) { ctemp = c__[j]; stemp = s[j]; if (ctemp != 1. || stemp != 0.) { i__1 = *m; for (i__ = 1; i__ <= i__1; ++i__) { i__2 = i__ + (j + 1) * a_dim1; temp.r = a[i__2].r, temp.i = a[i__2].i; i__2 = i__ + (j + 1) * a_dim1; z__2.r = ctemp * temp.r, z__2.i = ctemp * temp.i; i__3 = i__ + j * a_dim1; z__3.r = stemp * a[i__3].r, z__3.i = stemp * a[ i__3].i; z__1.r = z__2.r - z__3.r, z__1.i = z__2.i - z__3.i; a[i__2].r = z__1.r, a[i__2].i = z__1.i; i__2 = i__ + j * a_dim1; z__2.r = stemp * temp.r, z__2.i = stemp * temp.i; i__3 = i__ + j * a_dim1; z__3.r = ctemp * a[i__3].r, z__3.i = ctemp * a[ i__3].i; z__1.r = z__2.r + z__3.r, z__1.i = z__2.i + z__3.i; a[i__2].r = z__1.r, a[i__2].i = z__1.i; /* L150: */ } } /* L160: */ } } } else if (lsame_(pivot, (char *)"T", (ftnlen)1, (ftnlen)1)) { if (lsame_(direct, (char *)"F", (ftnlen)1, (ftnlen)1)) { i__1 = *n; for (j = 2; j <= i__1; ++j) { ctemp = c__[j - 1]; stemp = s[j - 1]; if (ctemp != 1. || stemp != 0.) { i__2 = *m; for (i__ = 1; i__ <= i__2; ++i__) { i__3 = i__ + j * a_dim1; temp.r = a[i__3].r, temp.i = a[i__3].i; i__3 = i__ + j * a_dim1; z__2.r = ctemp * temp.r, z__2.i = ctemp * temp.i; i__4 = i__ + a_dim1; z__3.r = stemp * a[i__4].r, z__3.i = stemp * a[ i__4].i; z__1.r = z__2.r - z__3.r, z__1.i = z__2.i - z__3.i; a[i__3].r = z__1.r, a[i__3].i = z__1.i; i__3 = i__ + a_dim1; z__2.r = stemp * temp.r, z__2.i = stemp * temp.i; i__4 = i__ + a_dim1; z__3.r = ctemp * a[i__4].r, z__3.i = ctemp * a[ i__4].i; z__1.r = z__2.r + z__3.r, z__1.i = z__2.i + z__3.i; a[i__3].r = z__1.r, a[i__3].i = z__1.i; /* L170: */ } } /* L180: */ } } else if (lsame_(direct, (char *)"B", (ftnlen)1, (ftnlen)1)) { for (j = *n; j >= 2; --j) { ctemp = c__[j - 1]; stemp = s[j - 1]; if (ctemp != 1. || stemp != 0.) { i__1 = *m; for (i__ = 1; i__ <= i__1; ++i__) { i__2 = i__ + j * a_dim1; temp.r = a[i__2].r, temp.i = a[i__2].i; i__2 = i__ + j * a_dim1; z__2.r = ctemp * temp.r, z__2.i = ctemp * temp.i; i__3 = i__ + a_dim1; z__3.r = stemp * a[i__3].r, z__3.i = stemp * a[ i__3].i; z__1.r = z__2.r - z__3.r, z__1.i = z__2.i - z__3.i; a[i__2].r = z__1.r, a[i__2].i = z__1.i; i__2 = i__ + a_dim1; z__2.r = stemp * temp.r, z__2.i = stemp * temp.i; i__3 = i__ + a_dim1; z__3.r = ctemp * a[i__3].r, z__3.i = ctemp * a[ i__3].i; z__1.r = z__2.r + z__3.r, z__1.i = z__2.i + z__3.i; a[i__2].r = z__1.r, a[i__2].i = z__1.i; /* L190: */ } } /* L200: */ } } } else if (lsame_(pivot, (char *)"B", (ftnlen)1, (ftnlen)1)) { if (lsame_(direct, (char *)"F", (ftnlen)1, (ftnlen)1)) { i__1 = *n - 1; for (j = 1; j <= i__1; ++j) { ctemp = c__[j]; stemp = s[j]; if (ctemp != 1. || stemp != 0.) { i__2 = *m; for (i__ = 1; i__ <= i__2; ++i__) { i__3 = i__ + j * a_dim1; temp.r = a[i__3].r, temp.i = a[i__3].i; i__3 = i__ + j * a_dim1; i__4 = i__ + *n * a_dim1; z__2.r = stemp * a[i__4].r, z__2.i = stemp * a[ i__4].i; z__3.r = ctemp * temp.r, z__3.i = ctemp * temp.i; z__1.r = z__2.r + z__3.r, z__1.i = z__2.i + z__3.i; a[i__3].r = z__1.r, a[i__3].i = z__1.i; i__3 = i__ + *n * a_dim1; i__4 = i__ + *n * a_dim1; z__2.r = ctemp * a[i__4].r, z__2.i = ctemp * a[ i__4].i; z__3.r = stemp * temp.r, z__3.i = stemp * temp.i; z__1.r = z__2.r - z__3.r, z__1.i = z__2.i - z__3.i; a[i__3].r = z__1.r, a[i__3].i = z__1.i; /* L210: */ } } /* L220: */ } } else if (lsame_(direct, (char *)"B", (ftnlen)1, (ftnlen)1)) { for (j = *n - 1; j >= 1; --j) { ctemp = c__[j]; stemp = s[j]; if (ctemp != 1. || stemp != 0.) { i__1 = *m; for (i__ = 1; i__ <= i__1; ++i__) { i__2 = i__ + j * a_dim1; temp.r = a[i__2].r, temp.i = a[i__2].i; i__2 = i__ + j * a_dim1; i__3 = i__ + *n * a_dim1; z__2.r = stemp * a[i__3].r, z__2.i = stemp * a[ i__3].i; z__3.r = ctemp * temp.r, z__3.i = ctemp * temp.i; z__1.r = z__2.r + z__3.r, z__1.i = z__2.i + z__3.i; a[i__2].r = z__1.r, a[i__2].i = z__1.i; i__2 = i__ + *n * a_dim1; i__3 = i__ + *n * a_dim1; z__2.r = ctemp * a[i__3].r, z__2.i = ctemp * a[ i__3].i; z__3.r = stemp * temp.r, z__3.i = stemp * temp.i; z__1.r = z__2.r - z__3.r, z__1.i = z__2.i - z__3.i; a[i__2].r = z__1.r, a[i__2].i = z__1.i; /* L230: */ } } /* L240: */ } } } } return 0; /* End of ZLASR */ } /* zlasr_ */ #ifdef __cplusplus } #endif