/* fortran/zlatrd.f -- translated by f2c (version 20200916). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #ifdef __cplusplus extern "C" { #endif #include "lmp_f2c.h" /* Table of constant values */ static doublecomplex c_b1 = {0.,0.}; static doublecomplex c_b2 = {1.,0.}; static integer c__1 = 1; /* > \brief \b ZLATRD reduces the first nb rows and columns of a symmetric/Hermitian matrix A to real tridiago nal form by an unitary similarity transformation. */ /* =========== DOCUMENTATION =========== */ /* Online html documentation available at */ /* http://www.netlib.org/lapack/explore-html/ */ /* > \htmlonly */ /* > Download ZLATRD + dependencies */ /* > */ /* > [TGZ] */ /* > */ /* > [ZIP] */ /* > */ /* > [TXT] */ /* > \endhtmlonly */ /* Definition: */ /* =========== */ /* SUBROUTINE ZLATRD( UPLO, N, NB, A, LDA, E, TAU, W, LDW ) */ /* .. Scalar Arguments .. */ /* CHARACTER UPLO */ /* INTEGER LDA, LDW, N, NB */ /* .. */ /* .. Array Arguments .. */ /* DOUBLE PRECISION E( * ) */ /* COMPLEX*16 A( LDA, * ), TAU( * ), W( LDW, * ) */ /* .. */ /* > \par Purpose: */ /* ============= */ /* > */ /* > \verbatim */ /* > */ /* > ZLATRD reduces NB rows and columns of a complex Hermitian matrix A to */ /* > Hermitian tridiagonal form by a unitary similarity */ /* > transformation Q**H * A * Q, and returns the matrices V and W which are */ /* > needed to apply the transformation to the unreduced part of A. */ /* > */ /* > If UPLO = 'U', ZLATRD reduces the last NB rows and columns of a */ /* > matrix, of which the upper triangle is supplied; */ /* > if UPLO = 'L', ZLATRD reduces the first NB rows and columns of a */ /* > matrix, of which the lower triangle is supplied. */ /* > */ /* > This is an auxiliary routine called by ZHETRD. */ /* > \endverbatim */ /* Arguments: */ /* ========== */ /* > \param[in] UPLO */ /* > \verbatim */ /* > UPLO is CHARACTER*1 */ /* > Specifies whether the upper or lower triangular part of the */ /* > Hermitian matrix A is stored: */ /* > = 'U': Upper triangular */ /* > = 'L': Lower triangular */ /* > \endverbatim */ /* > */ /* > \param[in] N */ /* > \verbatim */ /* > N is INTEGER */ /* > The order of the matrix A. */ /* > \endverbatim */ /* > */ /* > \param[in] NB */ /* > \verbatim */ /* > NB is INTEGER */ /* > The number of rows and columns to be reduced. */ /* > \endverbatim */ /* > */ /* > \param[in,out] A */ /* > \verbatim */ /* > A is COMPLEX*16 array, dimension (LDA,N) */ /* > On entry, the Hermitian matrix A. If UPLO = 'U', the leading */ /* > n-by-n upper triangular part of A contains the upper */ /* > triangular part of the matrix A, and the strictly lower */ /* > triangular part of A is not referenced. If UPLO = 'L', the */ /* > leading n-by-n lower triangular part of A contains the lower */ /* > triangular part of the matrix A, and the strictly upper */ /* > triangular part of A is not referenced. */ /* > On exit: */ /* > if UPLO = 'U', the last NB columns have been reduced to */ /* > tridiagonal form, with the diagonal elements overwriting */ /* > the diagonal elements of A; the elements above the diagonal */ /* > with the array TAU, represent the unitary matrix Q as a */ /* > product of elementary reflectors; */ /* > if UPLO = 'L', the first NB columns have been reduced to */ /* > tridiagonal form, with the diagonal elements overwriting */ /* > the diagonal elements of A; the elements below the diagonal */ /* > with the array TAU, represent the unitary matrix Q as a */ /* > product of elementary reflectors. */ /* > See Further Details. */ /* > \endverbatim */ /* > */ /* > \param[in] LDA */ /* > \verbatim */ /* > LDA is INTEGER */ /* > The leading dimension of the array A. LDA >= max(1,N). */ /* > \endverbatim */ /* > */ /* > \param[out] E */ /* > \verbatim */ /* > E is DOUBLE PRECISION array, dimension (N-1) */ /* > If UPLO = 'U', E(n-nb:n-1) contains the superdiagonal */ /* > elements of the last NB columns of the reduced matrix; */ /* > if UPLO = 'L', E(1:nb) contains the subdiagonal elements of */ /* > the first NB columns of the reduced matrix. */ /* > \endverbatim */ /* > */ /* > \param[out] TAU */ /* > \verbatim */ /* > TAU is COMPLEX*16 array, dimension (N-1) */ /* > The scalar factors of the elementary reflectors, stored in */ /* > TAU(n-nb:n-1) if UPLO = 'U', and in TAU(1:nb) if UPLO = 'L'. */ /* > See Further Details. */ /* > \endverbatim */ /* > */ /* > \param[out] W */ /* > \verbatim */ /* > W is COMPLEX*16 array, dimension (LDW,NB) */ /* > The n-by-nb matrix W required to update the unreduced part */ /* > of A. */ /* > \endverbatim */ /* > */ /* > \param[in] LDW */ /* > \verbatim */ /* > LDW is INTEGER */ /* > The leading dimension of the array W. LDW >= max(1,N). */ /* > \endverbatim */ /* Authors: */ /* ======== */ /* > \author Univ. of Tennessee */ /* > \author Univ. of California Berkeley */ /* > \author Univ. of Colorado Denver */ /* > \author NAG Ltd. */ /* > \ingroup complex16OTHERauxiliary */ /* > \par Further Details: */ /* ===================== */ /* > */ /* > \verbatim */ /* > */ /* > If UPLO = 'U', the matrix Q is represented as a product of elementary */ /* > reflectors */ /* > */ /* > Q = H(n) H(n-1) . . . H(n-nb+1). */ /* > */ /* > Each H(i) has the form */ /* > */ /* > H(i) = I - tau * v * v**H */ /* > */ /* > where tau is a complex scalar, and v is a complex vector with */ /* > v(i:n) = 0 and v(i-1) = 1; v(1:i-1) is stored on exit in A(1:i-1,i), */ /* > and tau in TAU(i-1). */ /* > */ /* > If UPLO = 'L', the matrix Q is represented as a product of elementary */ /* > reflectors */ /* > */ /* > Q = H(1) H(2) . . . H(nb). */ /* > */ /* > Each H(i) has the form */ /* > */ /* > H(i) = I - tau * v * v**H */ /* > */ /* > where tau is a complex scalar, and v is a complex vector with */ /* > v(1:i) = 0 and v(i+1) = 1; v(i+1:n) is stored on exit in A(i+1:n,i), */ /* > and tau in TAU(i). */ /* > */ /* > The elements of the vectors v together form the n-by-nb matrix V */ /* > which is needed, with W, to apply the transformation to the unreduced */ /* > part of the matrix, using a Hermitian rank-2k update of the form: */ /* > A := A - V*W**H - W*V**H. */ /* > */ /* > The contents of A on exit are illustrated by the following examples */ /* > with n = 5 and nb = 2: */ /* > */ /* > if UPLO = 'U': if UPLO = 'L': */ /* > */ /* > ( a a a v4 v5 ) ( d ) */ /* > ( a a v4 v5 ) ( 1 d ) */ /* > ( a 1 v5 ) ( v1 1 a ) */ /* > ( d 1 ) ( v1 v2 a a ) */ /* > ( d ) ( v1 v2 a a a ) */ /* > */ /* > where d denotes a diagonal element of the reduced matrix, a denotes */ /* > an element of the original matrix that is unchanged, and vi denotes */ /* > an element of the vector defining H(i). */ /* > \endverbatim */ /* > */ /* ===================================================================== */ /* Subroutine */ int zlatrd_(char *uplo, integer *n, integer *nb, doublecomplex *a, integer *lda, doublereal *e, doublecomplex *tau, doublecomplex *w, integer *ldw, ftnlen uplo_len) { /* System generated locals */ integer a_dim1, a_offset, w_dim1, w_offset, i__1, i__2, i__3; doublereal d__1; doublecomplex z__1, z__2, z__3, z__4; /* Local variables */ integer i__, iw; doublecomplex alpha; extern logical lsame_(char *, char *, ftnlen, ftnlen); extern /* Subroutine */ int zscal_(integer *, doublecomplex *, doublecomplex *, integer *); extern /* Double Complex */ VOID zdotc_(doublecomplex *, integer *, doublecomplex *, integer *, doublecomplex *, integer *); extern /* Subroutine */ int zgemv_(char *, integer *, integer *, doublecomplex *, doublecomplex *, integer *, doublecomplex *, integer *, doublecomplex *, doublecomplex *, integer *, ftnlen), zhemv_(char *, integer *, doublecomplex *, doublecomplex *, integer *, doublecomplex *, integer *, doublecomplex *, doublecomplex *, integer *, ftnlen), zaxpy_(integer *, doublecomplex *, doublecomplex *, integer *, doublecomplex *, integer *), zlarfg_(integer *, doublecomplex *, doublecomplex *, integer *, doublecomplex *), zlacgv_(integer *, doublecomplex *, integer *); /* -- LAPACK auxiliary routine -- */ /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */ /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Quick return if possible */ /* Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; --e; --tau; w_dim1 = *ldw; w_offset = 1 + w_dim1; w -= w_offset; /* Function Body */ if (*n <= 0) { return 0; } if (lsame_(uplo, (char *)"U", (ftnlen)1, (ftnlen)1)) { /* Reduce last NB columns of upper triangle */ i__1 = *n - *nb + 1; for (i__ = *n; i__ >= i__1; --i__) { iw = i__ - *n + *nb; if (i__ < *n) { /* Update A(1:i,i) */ i__2 = i__ + i__ * a_dim1; i__3 = i__ + i__ * a_dim1; d__1 = a[i__3].r; a[i__2].r = d__1, a[i__2].i = 0.; i__2 = *n - i__; zlacgv_(&i__2, &w[i__ + (iw + 1) * w_dim1], ldw); i__2 = *n - i__; z__1.r = -1., z__1.i = -0.; zgemv_((char *)"No transpose", &i__, &i__2, &z__1, &a[(i__ + 1) * a_dim1 + 1], lda, &w[i__ + (iw + 1) * w_dim1], ldw, & c_b2, &a[i__ * a_dim1 + 1], &c__1, (ftnlen)12); i__2 = *n - i__; zlacgv_(&i__2, &w[i__ + (iw + 1) * w_dim1], ldw); i__2 = *n - i__; zlacgv_(&i__2, &a[i__ + (i__ + 1) * a_dim1], lda); i__2 = *n - i__; z__1.r = -1., z__1.i = -0.; zgemv_((char *)"No transpose", &i__, &i__2, &z__1, &w[(iw + 1) * w_dim1 + 1], ldw, &a[i__ + (i__ + 1) * a_dim1], lda, & c_b2, &a[i__ * a_dim1 + 1], &c__1, (ftnlen)12); i__2 = *n - i__; zlacgv_(&i__2, &a[i__ + (i__ + 1) * a_dim1], lda); i__2 = i__ + i__ * a_dim1; i__3 = i__ + i__ * a_dim1; d__1 = a[i__3].r; a[i__2].r = d__1, a[i__2].i = 0.; } if (i__ > 1) { /* Generate elementary reflector H(i) to annihilate */ /* A(1:i-2,i) */ i__2 = i__ - 1 + i__ * a_dim1; alpha.r = a[i__2].r, alpha.i = a[i__2].i; i__2 = i__ - 1; zlarfg_(&i__2, &alpha, &a[i__ * a_dim1 + 1], &c__1, &tau[i__ - 1]); e[i__ - 1] = alpha.r; i__2 = i__ - 1 + i__ * a_dim1; a[i__2].r = 1., a[i__2].i = 0.; /* Compute W(1:i-1,i) */ i__2 = i__ - 1; zhemv_((char *)"Upper", &i__2, &c_b2, &a[a_offset], lda, &a[i__ * a_dim1 + 1], &c__1, &c_b1, &w[iw * w_dim1 + 1], &c__1, (ftnlen)5); if (i__ < *n) { i__2 = i__ - 1; i__3 = *n - i__; zgemv_((char *)"Conjugate transpose", &i__2, &i__3, &c_b2, &w[(iw + 1) * w_dim1 + 1], ldw, &a[i__ * a_dim1 + 1], & c__1, &c_b1, &w[i__ + 1 + iw * w_dim1], &c__1, ( ftnlen)19); i__2 = i__ - 1; i__3 = *n - i__; z__1.r = -1., z__1.i = -0.; zgemv_((char *)"No transpose", &i__2, &i__3, &z__1, &a[(i__ + 1) * a_dim1 + 1], lda, &w[i__ + 1 + iw * w_dim1], & c__1, &c_b2, &w[iw * w_dim1 + 1], &c__1, (ftnlen) 12); i__2 = i__ - 1; i__3 = *n - i__; zgemv_((char *)"Conjugate transpose", &i__2, &i__3, &c_b2, &a[( i__ + 1) * a_dim1 + 1], lda, &a[i__ * a_dim1 + 1], &c__1, &c_b1, &w[i__ + 1 + iw * w_dim1], &c__1, ( ftnlen)19); i__2 = i__ - 1; i__3 = *n - i__; z__1.r = -1., z__1.i = -0.; zgemv_((char *)"No transpose", &i__2, &i__3, &z__1, &w[(iw + 1) * w_dim1 + 1], ldw, &w[i__ + 1 + iw * w_dim1], & c__1, &c_b2, &w[iw * w_dim1 + 1], &c__1, (ftnlen) 12); } i__2 = i__ - 1; zscal_(&i__2, &tau[i__ - 1], &w[iw * w_dim1 + 1], &c__1); z__3.r = -.5, z__3.i = -0.; i__2 = i__ - 1; z__2.r = z__3.r * tau[i__2].r - z__3.i * tau[i__2].i, z__2.i = z__3.r * tau[i__2].i + z__3.i * tau[i__2].r; i__3 = i__ - 1; zdotc_(&z__4, &i__3, &w[iw * w_dim1 + 1], &c__1, &a[i__ * a_dim1 + 1], &c__1); z__1.r = z__2.r * z__4.r - z__2.i * z__4.i, z__1.i = z__2.r * z__4.i + z__2.i * z__4.r; alpha.r = z__1.r, alpha.i = z__1.i; i__2 = i__ - 1; zaxpy_(&i__2, &alpha, &a[i__ * a_dim1 + 1], &c__1, &w[iw * w_dim1 + 1], &c__1); } /* L10: */ } } else { /* Reduce first NB columns of lower triangle */ i__1 = *nb; for (i__ = 1; i__ <= i__1; ++i__) { /* Update A(i:n,i) */ i__2 = i__ + i__ * a_dim1; i__3 = i__ + i__ * a_dim1; d__1 = a[i__3].r; a[i__2].r = d__1, a[i__2].i = 0.; i__2 = i__ - 1; zlacgv_(&i__2, &w[i__ + w_dim1], ldw); i__2 = *n - i__ + 1; i__3 = i__ - 1; z__1.r = -1., z__1.i = -0.; zgemv_((char *)"No transpose", &i__2, &i__3, &z__1, &a[i__ + a_dim1], lda, &w[i__ + w_dim1], ldw, &c_b2, &a[i__ + i__ * a_dim1], & c__1, (ftnlen)12); i__2 = i__ - 1; zlacgv_(&i__2, &w[i__ + w_dim1], ldw); i__2 = i__ - 1; zlacgv_(&i__2, &a[i__ + a_dim1], lda); i__2 = *n - i__ + 1; i__3 = i__ - 1; z__1.r = -1., z__1.i = -0.; zgemv_((char *)"No transpose", &i__2, &i__3, &z__1, &w[i__ + w_dim1], ldw, &a[i__ + a_dim1], lda, &c_b2, &a[i__ + i__ * a_dim1], & c__1, (ftnlen)12); i__2 = i__ - 1; zlacgv_(&i__2, &a[i__ + a_dim1], lda); i__2 = i__ + i__ * a_dim1; i__3 = i__ + i__ * a_dim1; d__1 = a[i__3].r; a[i__2].r = d__1, a[i__2].i = 0.; if (i__ < *n) { /* Generate elementary reflector H(i) to annihilate */ /* A(i+2:n,i) */ i__2 = i__ + 1 + i__ * a_dim1; alpha.r = a[i__2].r, alpha.i = a[i__2].i; i__2 = *n - i__; /* Computing MIN */ i__3 = i__ + 2; zlarfg_(&i__2, &alpha, &a[min(i__3,*n) + i__ * a_dim1], &c__1, &tau[i__]); e[i__] = alpha.r; i__2 = i__ + 1 + i__ * a_dim1; a[i__2].r = 1., a[i__2].i = 0.; /* Compute W(i+1:n,i) */ i__2 = *n - i__; zhemv_((char *)"Lower", &i__2, &c_b2, &a[i__ + 1 + (i__ + 1) * a_dim1] , lda, &a[i__ + 1 + i__ * a_dim1], &c__1, &c_b1, &w[ i__ + 1 + i__ * w_dim1], &c__1, (ftnlen)5); i__2 = *n - i__; i__3 = i__ - 1; zgemv_((char *)"Conjugate transpose", &i__2, &i__3, &c_b2, &w[i__ + 1 + w_dim1], ldw, &a[i__ + 1 + i__ * a_dim1], &c__1, & c_b1, &w[i__ * w_dim1 + 1], &c__1, (ftnlen)19); i__2 = *n - i__; i__3 = i__ - 1; z__1.r = -1., z__1.i = -0.; zgemv_((char *)"No transpose", &i__2, &i__3, &z__1, &a[i__ + 1 + a_dim1], lda, &w[i__ * w_dim1 + 1], &c__1, &c_b2, &w[ i__ + 1 + i__ * w_dim1], &c__1, (ftnlen)12); i__2 = *n - i__; i__3 = i__ - 1; zgemv_((char *)"Conjugate transpose", &i__2, &i__3, &c_b2, &a[i__ + 1 + a_dim1], lda, &a[i__ + 1 + i__ * a_dim1], &c__1, & c_b1, &w[i__ * w_dim1 + 1], &c__1, (ftnlen)19); i__2 = *n - i__; i__3 = i__ - 1; z__1.r = -1., z__1.i = -0.; zgemv_((char *)"No transpose", &i__2, &i__3, &z__1, &w[i__ + 1 + w_dim1], ldw, &w[i__ * w_dim1 + 1], &c__1, &c_b2, &w[ i__ + 1 + i__ * w_dim1], &c__1, (ftnlen)12); i__2 = *n - i__; zscal_(&i__2, &tau[i__], &w[i__ + 1 + i__ * w_dim1], &c__1); z__3.r = -.5, z__3.i = -0.; i__2 = i__; z__2.r = z__3.r * tau[i__2].r - z__3.i * tau[i__2].i, z__2.i = z__3.r * tau[i__2].i + z__3.i * tau[i__2].r; i__3 = *n - i__; zdotc_(&z__4, &i__3, &w[i__ + 1 + i__ * w_dim1], &c__1, &a[ i__ + 1 + i__ * a_dim1], &c__1); z__1.r = z__2.r * z__4.r - z__2.i * z__4.i, z__1.i = z__2.r * z__4.i + z__2.i * z__4.r; alpha.r = z__1.r, alpha.i = z__1.i; i__2 = *n - i__; zaxpy_(&i__2, &alpha, &a[i__ + 1 + i__ * a_dim1], &c__1, &w[ i__ + 1 + i__ * w_dim1], &c__1); } /* L20: */ } } return 0; /* End of ZLATRD */ } /* zlatrd_ */ #ifdef __cplusplus } #endif