/* fortran/zpptrf.f -- translated by f2c (version 20200916). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #ifdef __cplusplus extern "C" { #endif #include "lmp_f2c.h" /* Table of constant values */ static integer c__1 = 1; static doublereal c_b16 = -1.; /* > \brief \b ZPPTRF */ /* =========== DOCUMENTATION =========== */ /* Online html documentation available at */ /* http://www.netlib.org/lapack/explore-html/ */ /* > \htmlonly */ /* > Download ZPPTRF + dependencies */ /* > */ /* > [TGZ] */ /* > */ /* > [ZIP] */ /* > */ /* > [TXT] */ /* > \endhtmlonly */ /* Definition: */ /* =========== */ /* SUBROUTINE ZPPTRF( UPLO, N, AP, INFO ) */ /* .. Scalar Arguments .. */ /* CHARACTER UPLO */ /* INTEGER INFO, N */ /* .. */ /* .. Array Arguments .. */ /* COMPLEX*16 AP( * ) */ /* .. */ /* > \par Purpose: */ /* ============= */ /* > */ /* > \verbatim */ /* > */ /* > ZPPTRF computes the Cholesky factorization of a complex Hermitian */ /* > positive definite matrix A stored in packed format. */ /* > */ /* > The factorization has the form */ /* > A = U**H * U, if UPLO = 'U', or */ /* > A = L * L**H, if UPLO = 'L', */ /* > where U is an upper triangular matrix and L is lower triangular. */ /* > \endverbatim */ /* Arguments: */ /* ========== */ /* > \param[in] UPLO */ /* > \verbatim */ /* > UPLO is CHARACTER*1 */ /* > = 'U': Upper triangle of A is stored; */ /* > = 'L': Lower triangle of A is stored. */ /* > \endverbatim */ /* > */ /* > \param[in] N */ /* > \verbatim */ /* > N is INTEGER */ /* > The order of the matrix A. N >= 0. */ /* > \endverbatim */ /* > */ /* > \param[in,out] AP */ /* > \verbatim */ /* > AP is COMPLEX*16 array, dimension (N*(N+1)/2) */ /* > On entry, the upper or lower triangle of the Hermitian matrix */ /* > A, packed columnwise in a linear array. The j-th column of A */ /* > is stored in the array AP as follows: */ /* > if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; */ /* > if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n. */ /* > See below for further details. */ /* > */ /* > On exit, if INFO = 0, the triangular factor U or L from the */ /* > Cholesky factorization A = U**H*U or A = L*L**H, in the same */ /* > storage format as A. */ /* > \endverbatim */ /* > */ /* > \param[out] INFO */ /* > \verbatim */ /* > INFO is INTEGER */ /* > = 0: successful exit */ /* > < 0: if INFO = -i, the i-th argument had an illegal value */ /* > > 0: if INFO = i, the leading minor of order i is not */ /* > positive definite, and the factorization could not be */ /* > completed. */ /* > \endverbatim */ /* Authors: */ /* ======== */ /* > \author Univ. of Tennessee */ /* > \author Univ. of California Berkeley */ /* > \author Univ. of Colorado Denver */ /* > \author NAG Ltd. */ /* > \ingroup complex16OTHERcomputational */ /* > \par Further Details: */ /* ===================== */ /* > */ /* > \verbatim */ /* > */ /* > The packed storage scheme is illustrated by the following example */ /* > when N = 4, UPLO = 'U': */ /* > */ /* > Two-dimensional storage of the Hermitian matrix A: */ /* > */ /* > a11 a12 a13 a14 */ /* > a22 a23 a24 */ /* > a33 a34 (aij = conjg(aji)) */ /* > a44 */ /* > */ /* > Packed storage of the upper triangle of A: */ /* > */ /* > AP = [ a11, a12, a22, a13, a23, a33, a14, a24, a34, a44 ] */ /* > \endverbatim */ /* > */ /* ===================================================================== */ /* Subroutine */ int zpptrf_(char *uplo, integer *n, doublecomplex *ap, integer *info, ftnlen uplo_len) { /* System generated locals */ integer i__1, i__2, i__3; doublereal d__1; doublecomplex z__1; /* Builtin functions */ double sqrt(doublereal); /* Local variables */ integer j, jc, jj; doublereal ajj; extern /* Subroutine */ int zhpr_(char *, integer *, doublereal *, doublecomplex *, integer *, doublecomplex *, ftnlen); extern logical lsame_(char *, char *, ftnlen, ftnlen); extern /* Double Complex */ VOID zdotc_(doublecomplex *, integer *, doublecomplex *, integer *, doublecomplex *, integer *); logical upper; extern /* Subroutine */ int ztpsv_(char *, char *, char *, integer *, doublecomplex *, doublecomplex *, integer *, ftnlen, ftnlen, ftnlen), xerbla_(char *, integer *, ftnlen), zdscal_(integer *, doublereal *, doublecomplex *, integer *); /* -- LAPACK computational routine -- */ /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */ /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Test the input parameters. */ /* Parameter adjustments */ --ap; /* Function Body */ *info = 0; upper = lsame_(uplo, (char *)"U", (ftnlen)1, (ftnlen)1); if (! upper && ! lsame_(uplo, (char *)"L", (ftnlen)1, (ftnlen)1)) { *info = -1; } else if (*n < 0) { *info = -2; } if (*info != 0) { i__1 = -(*info); xerbla_((char *)"ZPPTRF", &i__1, (ftnlen)6); return 0; } /* Quick return if possible */ if (*n == 0) { return 0; } if (upper) { /* Compute the Cholesky factorization A = U**H * U. */ jj = 0; i__1 = *n; for (j = 1; j <= i__1; ++j) { jc = jj + 1; jj += j; /* Compute elements 1:J-1 of column J. */ if (j > 1) { i__2 = j - 1; ztpsv_((char *)"Upper", (char *)"Conjugate transpose", (char *)"Non-unit", &i__2, &ap[ 1], &ap[jc], &c__1, (ftnlen)5, (ftnlen)19, (ftnlen)8); } /* Compute U(J,J) and test for non-positive-definiteness. */ i__2 = jj; i__3 = j - 1; zdotc_(&z__1, &i__3, &ap[jc], &c__1, &ap[jc], &c__1); ajj = ap[i__2].r - z__1.r; if (ajj <= 0.) { i__2 = jj; ap[i__2].r = ajj, ap[i__2].i = 0.; goto L30; } i__2 = jj; d__1 = sqrt(ajj); ap[i__2].r = d__1, ap[i__2].i = 0.; /* L10: */ } } else { /* Compute the Cholesky factorization A = L * L**H. */ jj = 1; i__1 = *n; for (j = 1; j <= i__1; ++j) { /* Compute L(J,J) and test for non-positive-definiteness. */ i__2 = jj; ajj = ap[i__2].r; if (ajj <= 0.) { i__2 = jj; ap[i__2].r = ajj, ap[i__2].i = 0.; goto L30; } ajj = sqrt(ajj); i__2 = jj; ap[i__2].r = ajj, ap[i__2].i = 0.; /* Compute elements J+1:N of column J and update the trailing */ /* submatrix. */ if (j < *n) { i__2 = *n - j; d__1 = 1. / ajj; zdscal_(&i__2, &d__1, &ap[jj + 1], &c__1); i__2 = *n - j; zhpr_((char *)"Lower", &i__2, &c_b16, &ap[jj + 1], &c__1, &ap[jj + *n - j + 1], (ftnlen)5); jj = jj + *n - j + 1; } /* L20: */ } } goto L40; L30: *info = j; L40: return 0; /* End of ZPPTRF */ } /* zpptrf_ */ #ifdef __cplusplus } #endif