/* fortran/zpptri.f -- translated by f2c (version 20200916). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #ifdef __cplusplus extern "C" { #endif #include "lmp_f2c.h" /* Table of constant values */ static doublereal c_b8 = 1.; static integer c__1 = 1; /* > \brief \b ZPPTRI */ /* =========== DOCUMENTATION =========== */ /* Online html documentation available at */ /* http://www.netlib.org/lapack/explore-html/ */ /* > \htmlonly */ /* > Download ZPPTRI + dependencies */ /* > */ /* > [TGZ] */ /* > */ /* > [ZIP] */ /* > */ /* > [TXT] */ /* > \endhtmlonly */ /* Definition: */ /* =========== */ /* SUBROUTINE ZPPTRI( UPLO, N, AP, INFO ) */ /* .. Scalar Arguments .. */ /* CHARACTER UPLO */ /* INTEGER INFO, N */ /* .. */ /* .. Array Arguments .. */ /* COMPLEX*16 AP( * ) */ /* .. */ /* > \par Purpose: */ /* ============= */ /* > */ /* > \verbatim */ /* > */ /* > ZPPTRI computes the inverse of a complex Hermitian positive definite */ /* > matrix A using the Cholesky factorization A = U**H*U or A = L*L**H */ /* > computed by ZPPTRF. */ /* > \endverbatim */ /* Arguments: */ /* ========== */ /* > \param[in] UPLO */ /* > \verbatim */ /* > UPLO is CHARACTER*1 */ /* > = 'U': Upper triangular factor is stored in AP; */ /* > = 'L': Lower triangular factor is stored in AP. */ /* > \endverbatim */ /* > */ /* > \param[in] N */ /* > \verbatim */ /* > N is INTEGER */ /* > The order of the matrix A. N >= 0. */ /* > \endverbatim */ /* > */ /* > \param[in,out] AP */ /* > \verbatim */ /* > AP is COMPLEX*16 array, dimension (N*(N+1)/2) */ /* > On entry, the triangular factor U or L from the Cholesky */ /* > factorization A = U**H*U or A = L*L**H, packed columnwise as */ /* > a linear array. The j-th column of U or L is stored in the */ /* > array AP as follows: */ /* > if UPLO = 'U', AP(i + (j-1)*j/2) = U(i,j) for 1<=i<=j; */ /* > if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = L(i,j) for j<=i<=n. */ /* > */ /* > On exit, the upper or lower triangle of the (Hermitian) */ /* > inverse of A, overwriting the input factor U or L. */ /* > \endverbatim */ /* > */ /* > \param[out] INFO */ /* > \verbatim */ /* > INFO is INTEGER */ /* > = 0: successful exit */ /* > < 0: if INFO = -i, the i-th argument had an illegal value */ /* > > 0: if INFO = i, the (i,i) element of the factor U or L is */ /* > zero, and the inverse could not be computed. */ /* > \endverbatim */ /* Authors: */ /* ======== */ /* > \author Univ. of Tennessee */ /* > \author Univ. of California Berkeley */ /* > \author Univ. of Colorado Denver */ /* > \author NAG Ltd. */ /* > \ingroup complex16OTHERcomputational */ /* ===================================================================== */ /* Subroutine */ int zpptri_(char *uplo, integer *n, doublecomplex *ap, integer *info, ftnlen uplo_len) { /* System generated locals */ integer i__1, i__2, i__3; doublereal d__1; doublecomplex z__1; /* Local variables */ integer j, jc, jj; doublereal ajj; integer jjn; extern /* Subroutine */ int zhpr_(char *, integer *, doublereal *, doublecomplex *, integer *, doublecomplex *, ftnlen); extern logical lsame_(char *, char *, ftnlen, ftnlen); extern /* Double Complex */ VOID zdotc_(doublecomplex *, integer *, doublecomplex *, integer *, doublecomplex *, integer *); logical upper; extern /* Subroutine */ int ztpmv_(char *, char *, char *, integer *, doublecomplex *, doublecomplex *, integer *, ftnlen, ftnlen, ftnlen), xerbla_(char *, integer *, ftnlen), zdscal_(integer *, doublereal *, doublecomplex *, integer *), ztptri_(char *, char *, integer *, doublecomplex *, integer *, ftnlen, ftnlen); /* -- LAPACK computational routine -- */ /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */ /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Test the input parameters. */ /* Parameter adjustments */ --ap; /* Function Body */ *info = 0; upper = lsame_(uplo, (char *)"U", (ftnlen)1, (ftnlen)1); if (! upper && ! lsame_(uplo, (char *)"L", (ftnlen)1, (ftnlen)1)) { *info = -1; } else if (*n < 0) { *info = -2; } if (*info != 0) { i__1 = -(*info); xerbla_((char *)"ZPPTRI", &i__1, (ftnlen)6); return 0; } /* Quick return if possible */ if (*n == 0) { return 0; } /* Invert the triangular Cholesky factor U or L. */ ztptri_(uplo, (char *)"Non-unit", n, &ap[1], info, (ftnlen)1, (ftnlen)8); if (*info > 0) { return 0; } if (upper) { /* Compute the product inv(U) * inv(U)**H. */ jj = 0; i__1 = *n; for (j = 1; j <= i__1; ++j) { jc = jj + 1; jj += j; if (j > 1) { i__2 = j - 1; zhpr_((char *)"Upper", &i__2, &c_b8, &ap[jc], &c__1, &ap[1], (ftnlen) 5); } i__2 = jj; ajj = ap[i__2].r; zdscal_(&j, &ajj, &ap[jc], &c__1); /* L10: */ } } else { /* Compute the product inv(L)**H * inv(L). */ jj = 1; i__1 = *n; for (j = 1; j <= i__1; ++j) { jjn = jj + *n - j + 1; i__2 = jj; i__3 = *n - j + 1; zdotc_(&z__1, &i__3, &ap[jj], &c__1, &ap[jj], &c__1); d__1 = z__1.r; ap[i__2].r = d__1, ap[i__2].i = 0.; if (j < *n) { i__2 = *n - j; ztpmv_((char *)"Lower", (char *)"Conjugate transpose", (char *)"Non-unit", &i__2, &ap[ jjn], &ap[jj + 1], &c__1, (ftnlen)5, (ftnlen)19, ( ftnlen)8); } jj = jjn; /* L20: */ } } return 0; /* End of ZPPTRI */ } /* zpptri_ */ #ifdef __cplusplus } #endif