/* fortran/ztptri.f -- translated by f2c (version 20200916). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #ifdef __cplusplus extern "C" { #endif #include "lmp_f2c.h" /* Table of constant values */ static doublecomplex c_b1 = {1.,0.}; static integer c__1 = 1; /* > \brief \b ZTPTRI */ /* =========== DOCUMENTATION =========== */ /* Online html documentation available at */ /* http://www.netlib.org/lapack/explore-html/ */ /* > \htmlonly */ /* > Download ZTPTRI + dependencies */ /* > */ /* > [TGZ] */ /* > */ /* > [ZIP] */ /* > */ /* > [TXT] */ /* > \endhtmlonly */ /* Definition: */ /* =========== */ /* SUBROUTINE ZTPTRI( UPLO, DIAG, N, AP, INFO ) */ /* .. Scalar Arguments .. */ /* CHARACTER DIAG, UPLO */ /* INTEGER INFO, N */ /* .. */ /* .. Array Arguments .. */ /* COMPLEX*16 AP( * ) */ /* .. */ /* > \par Purpose: */ /* ============= */ /* > */ /* > \verbatim */ /* > */ /* > ZTPTRI computes the inverse of a complex upper or lower triangular */ /* > matrix A stored in packed format. */ /* > \endverbatim */ /* Arguments: */ /* ========== */ /* > \param[in] UPLO */ /* > \verbatim */ /* > UPLO is CHARACTER*1 */ /* > = 'U': A is upper triangular; */ /* > = 'L': A is lower triangular. */ /* > \endverbatim */ /* > */ /* > \param[in] DIAG */ /* > \verbatim */ /* > DIAG is CHARACTER*1 */ /* > = 'N': A is non-unit triangular; */ /* > = 'U': A is unit triangular. */ /* > \endverbatim */ /* > */ /* > \param[in] N */ /* > \verbatim */ /* > N is INTEGER */ /* > The order of the matrix A. N >= 0. */ /* > \endverbatim */ /* > */ /* > \param[in,out] AP */ /* > \verbatim */ /* > AP is COMPLEX*16 array, dimension (N*(N+1)/2) */ /* > On entry, the upper or lower triangular matrix A, stored */ /* > columnwise in a linear array. The j-th column of A is stored */ /* > in the array AP as follows: */ /* > if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; */ /* > if UPLO = 'L', AP(i + (j-1)*((2*n-j)/2) = A(i,j) for j<=i<=n. */ /* > See below for further details. */ /* > On exit, the (triangular) inverse of the original matrix, in */ /* > the same packed storage format. */ /* > \endverbatim */ /* > */ /* > \param[out] INFO */ /* > \verbatim */ /* > INFO is INTEGER */ /* > = 0: successful exit */ /* > < 0: if INFO = -i, the i-th argument had an illegal value */ /* > > 0: if INFO = i, A(i,i) is exactly zero. The triangular */ /* > matrix is singular and its inverse can not be computed. */ /* > \endverbatim */ /* Authors: */ /* ======== */ /* > \author Univ. of Tennessee */ /* > \author Univ. of California Berkeley */ /* > \author Univ. of Colorado Denver */ /* > \author NAG Ltd. */ /* > \ingroup complex16OTHERcomputational */ /* > \par Further Details: */ /* ===================== */ /* > */ /* > \verbatim */ /* > */ /* > A triangular matrix A can be transferred to packed storage using one */ /* > of the following program segments: */ /* > */ /* > UPLO = 'U': UPLO = 'L': */ /* > */ /* > JC = 1 JC = 1 */ /* > DO 2 J = 1, N DO 2 J = 1, N */ /* > DO 1 I = 1, J DO 1 I = J, N */ /* > AP(JC+I-1) = A(I,J) AP(JC+I-J) = A(I,J) */ /* > 1 CONTINUE 1 CONTINUE */ /* > JC = JC + J JC = JC + N - J + 1 */ /* > 2 CONTINUE 2 CONTINUE */ /* > \endverbatim */ /* > */ /* ===================================================================== */ /* Subroutine */ int ztptri_(char *uplo, char *diag, integer *n, doublecomplex *ap, integer *info, ftnlen uplo_len, ftnlen diag_len) { /* System generated locals */ integer i__1, i__2; doublecomplex z__1; /* Builtin functions */ void z_div(doublecomplex *, doublecomplex *, doublecomplex *); /* Local variables */ integer j, jc, jj; doublecomplex ajj; extern logical lsame_(char *, char *, ftnlen, ftnlen); extern /* Subroutine */ int zscal_(integer *, doublecomplex *, doublecomplex *, integer *); logical upper; extern /* Subroutine */ int ztpmv_(char *, char *, char *, integer *, doublecomplex *, doublecomplex *, integer *, ftnlen, ftnlen, ftnlen), xerbla_(char *, integer *, ftnlen); integer jclast; logical nounit; /* -- LAPACK computational routine -- */ /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */ /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Executable Statements .. */ /* Test the input parameters. */ /* Parameter adjustments */ --ap; /* Function Body */ *info = 0; upper = lsame_(uplo, (char *)"U", (ftnlen)1, (ftnlen)1); nounit = lsame_(diag, (char *)"N", (ftnlen)1, (ftnlen)1); if (! upper && ! lsame_(uplo, (char *)"L", (ftnlen)1, (ftnlen)1)) { *info = -1; } else if (! nounit && ! lsame_(diag, (char *)"U", (ftnlen)1, (ftnlen)1)) { *info = -2; } else if (*n < 0) { *info = -3; } if (*info != 0) { i__1 = -(*info); xerbla_((char *)"ZTPTRI", &i__1, (ftnlen)6); return 0; } /* Check for singularity if non-unit. */ if (nounit) { if (upper) { jj = 0; i__1 = *n; for (*info = 1; *info <= i__1; ++(*info)) { jj += *info; i__2 = jj; if (ap[i__2].r == 0. && ap[i__2].i == 0.) { return 0; } /* L10: */ } } else { jj = 1; i__1 = *n; for (*info = 1; *info <= i__1; ++(*info)) { i__2 = jj; if (ap[i__2].r == 0. && ap[i__2].i == 0.) { return 0; } jj = jj + *n - *info + 1; /* L20: */ } } *info = 0; } if (upper) { /* Compute inverse of upper triangular matrix. */ jc = 1; i__1 = *n; for (j = 1; j <= i__1; ++j) { if (nounit) { i__2 = jc + j - 1; z_div(&z__1, &c_b1, &ap[jc + j - 1]); ap[i__2].r = z__1.r, ap[i__2].i = z__1.i; i__2 = jc + j - 1; z__1.r = -ap[i__2].r, z__1.i = -ap[i__2].i; ajj.r = z__1.r, ajj.i = z__1.i; } else { z__1.r = -1., z__1.i = -0.; ajj.r = z__1.r, ajj.i = z__1.i; } /* Compute elements 1:j-1 of j-th column. */ i__2 = j - 1; ztpmv_((char *)"Upper", (char *)"No transpose", diag, &i__2, &ap[1], &ap[jc], & c__1, (ftnlen)5, (ftnlen)12, (ftnlen)1); i__2 = j - 1; zscal_(&i__2, &ajj, &ap[jc], &c__1); jc += j; /* L30: */ } } else { /* Compute inverse of lower triangular matrix. */ jc = *n * (*n + 1) / 2; for (j = *n; j >= 1; --j) { if (nounit) { i__1 = jc; z_div(&z__1, &c_b1, &ap[jc]); ap[i__1].r = z__1.r, ap[i__1].i = z__1.i; i__1 = jc; z__1.r = -ap[i__1].r, z__1.i = -ap[i__1].i; ajj.r = z__1.r, ajj.i = z__1.i; } else { z__1.r = -1., z__1.i = -0.; ajj.r = z__1.r, ajj.i = z__1.i; } if (j < *n) { /* Compute elements j+1:n of j-th column. */ i__1 = *n - j; ztpmv_((char *)"Lower", (char *)"No transpose", diag, &i__1, &ap[jclast], &ap[ jc + 1], &c__1, (ftnlen)5, (ftnlen)12, (ftnlen)1); i__1 = *n - j; zscal_(&i__1, &ajj, &ap[jc + 1], &c__1); } jclast = jc; jc = jc - *n + j - 2; /* L40: */ } } return 0; /* End of ZTPTRI */ } /* ztptri_ */ #ifdef __cplusplus } #endif