/* ---------------------------------------------------------------------- LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator https://www.lammps.org/, Sandia National Laboratories LAMMPS development team: developers@lammps.org Copyright (2003) Sandia Corporation. Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains certain rights in this software. This software is distributed under the GNU General Public License. See the README file in the top-level LAMMPS directory. ------------------------------------------------------------------------- */ /* ---------------------------------------------------------------------- Contributing author: Chuanfu Luo (luochuanfu@gmail.com) ------------------------------------------------------------------------- */ #include "angle_table.h" #include "atom.h" #include "comm.h" #include "domain.h" #include "error.h" #include "force.h" #include "math_const.h" #include "memory.h" #include "neighbor.h" #include "table_file_reader.h" #include "tokenizer.h" #include #include using namespace LAMMPS_NS; using MathConst::DEG2RAD; using MathConst::MY_PI; using MathConst::RAD2DEG; enum { LINEAR, SPLINE }; #define SMALL 0.001 #define TINY 1.E-10 /* ---------------------------------------------------------------------- */ AngleTable::AngleTable(LAMMPS *_lmp) : Angle(_lmp) { writedata = 0; ntables = 0; tables = nullptr; } /* ---------------------------------------------------------------------- */ AngleTable::~AngleTable() { for (int m = 0; m < ntables; m++) free_table(&tables[m]); memory->sfree(tables); if (allocated) { memory->destroy(setflag); memory->destroy(theta0); memory->destroy(tabindex); } } /* ---------------------------------------------------------------------- */ void AngleTable::compute(int eflag, int vflag) { int i1, i2, i3, n, type; double eangle, f1[3], f3[3]; double delx1, dely1, delz1, delx2, dely2, delz2; double rsq1, rsq2, r1, r2, c, s, a, a11, a12, a22; double theta, u, mdu; //mdu: minus du, -du/dx=f eangle = 0.0; ev_init(eflag, vflag); double **x = atom->x; double **f = atom->f; int **anglelist = neighbor->anglelist; int nanglelist = neighbor->nanglelist; int nlocal = atom->nlocal; int newton_bond = force->newton_bond; for (n = 0; n < nanglelist; n++) { i1 = anglelist[n][0]; i2 = anglelist[n][1]; i3 = anglelist[n][2]; type = anglelist[n][3]; // 1st bond delx1 = x[i1][0] - x[i2][0]; dely1 = x[i1][1] - x[i2][1]; delz1 = x[i1][2] - x[i2][2]; rsq1 = delx1 * delx1 + dely1 * dely1 + delz1 * delz1; r1 = sqrt(rsq1); // 2nd bond delx2 = x[i3][0] - x[i2][0]; dely2 = x[i3][1] - x[i2][1]; delz2 = x[i3][2] - x[i2][2]; rsq2 = delx2 * delx2 + dely2 * dely2 + delz2 * delz2; r2 = sqrt(rsq2); // angle (cos and sin) c = delx1 * delx2 + dely1 * dely2 + delz1 * delz2; c /= r1 * r2; if (c > 1.0) c = 1.0; if (c < -1.0) c = -1.0; s = sqrt(1.0 - c * c); if (s < SMALL) s = SMALL; s = 1.0 / s; // tabulated force & energy theta = acos(c); uf_lookup(type, theta, u, mdu); if (eflag) eangle = u; a = mdu * s; a11 = a * c / rsq1; a12 = -a / (r1 * r2); a22 = a * c / rsq2; f1[0] = a11 * delx1 + a12 * delx2; f1[1] = a11 * dely1 + a12 * dely2; f1[2] = a11 * delz1 + a12 * delz2; f3[0] = a22 * delx2 + a12 * delx1; f3[1] = a22 * dely2 + a12 * dely1; f3[2] = a22 * delz2 + a12 * delz1; // apply force to each of 3 atoms if (newton_bond || i1 < nlocal) { f[i1][0] += f1[0]; f[i1][1] += f1[1]; f[i1][2] += f1[2]; } if (newton_bond || i2 < nlocal) { f[i2][0] -= f1[0] + f3[0]; f[i2][1] -= f1[1] + f3[1]; f[i2][2] -= f1[2] + f3[2]; } if (newton_bond || i3 < nlocal) { f[i3][0] += f3[0]; f[i3][1] += f3[1]; f[i3][2] += f3[2]; } if (evflag) ev_tally(i1, i2, i3, nlocal, newton_bond, eangle, f1, f3, delx1, dely1, delz1, delx2, dely2, delz2); } } /* ---------------------------------------------------------------------- */ void AngleTable::allocate() { allocated = 1; const int np1 = atom->nangletypes + 1; memory->create(theta0, np1, "angle:theta0"); memory->create(tabindex, np1, "angle:tabindex"); memory->create(setflag, np1, "angle:setflag"); for (int i = 1; i < np1; i++) setflag[i] = 0; } /* ---------------------------------------------------------------------- global settings ------------------------------------------------------------------------- */ void AngleTable::settings(int narg, char **arg) { if (narg != 2) error->all(FLERR, "Illegal angle_style command"); if (strcmp(arg[0], "linear") == 0) tabstyle = LINEAR; else if (strcmp(arg[0], "spline") == 0) tabstyle = SPLINE; else error->all(FLERR, "Unknown table style in angle style table"); tablength = utils::inumeric(FLERR, arg[1], false, lmp); if (tablength < 2) error->all(FLERR, "Illegal number of angle table entries"); // delete old tables, since cannot just change settings for (int m = 0; m < ntables; m++) free_table(&tables[m]); memory->sfree(tables); if (allocated) { memory->destroy(setflag); memory->destroy(tabindex); } allocated = 0; ntables = 0; tables = nullptr; } /* ---------------------------------------------------------------------- set coeffs for one or more type pairs ------------------------------------------------------------------------- */ void AngleTable::coeff(int narg, char **arg) { if (narg != 3) error->all(FLERR, "Illegal angle_coeff command"); if (!allocated) allocate(); int ilo, ihi; utils::bounds(FLERR, arg[0], 1, atom->nangletypes, ilo, ihi, error); int me; MPI_Comm_rank(world, &me); tables = (Table *) memory->srealloc(tables, (ntables + 1) * sizeof(Table), "angle:tables"); Table *tb = &tables[ntables]; null_table(tb); if (me == 0) read_table(tb, arg[1], arg[2]); bcast_table(tb); // error check on table parameters if (tb->ninput <= 1) error->one(FLERR, "Invalid angle table length"); double alo, ahi; alo = tb->afile[0]; ahi = tb->afile[tb->ninput - 1]; if (fabs(alo - 0.0) > TINY || fabs(ahi - 180.0) > TINY) error->all(FLERR, "Angle table must range from 0 to 180 degrees"); // convert theta from degrees to radians for (int i = 0; i < tb->ninput; i++) { tb->afile[i] *= DEG2RAD; tb->ffile[i] *= RAD2DEG; } // spline read-in and compute a,e,f vectors within table spline_table(tb); compute_table(tb); // store ptr to table in tabindex int count = 0; for (int i = ilo; i <= ihi; i++) { tabindex[i] = ntables; setflag[i] = 1; theta0[i] = tb->theta0; count++; } ntables++; if (count == 0) error->all(FLERR, "Illegal angle_coeff command"); } /* ---------------------------------------------------------------------- return an equilbrium angle length should not be used, since don't know minimum of tabulated function ------------------------------------------------------------------------- */ double AngleTable::equilibrium_angle(int i) { return theta0[i]; } /* ---------------------------------------------------------------------- proc 0 writes to restart file ------------------------------------------------------------------------- */ void AngleTable::write_restart(FILE *fp) { write_restart_settings(fp); } /* ---------------------------------------------------------------------- proc 0 reads from restart file, bcasts ------------------------------------------------------------------------- */ void AngleTable::read_restart(FILE *fp) { read_restart_settings(fp); allocate(); } /* ---------------------------------------------------------------------- proc 0 writes to restart file ------------------------------------------------------------------------- */ void AngleTable::write_restart_settings(FILE *fp) { fwrite(&tabstyle, sizeof(int), 1, fp); fwrite(&tablength, sizeof(int), 1, fp); } /* ---------------------------------------------------------------------- proc 0 reads from restart file, bcasts ------------------------------------------------------------------------- */ void AngleTable::read_restart_settings(FILE *fp) { if (comm->me == 0) { utils::sfread(FLERR, &tabstyle, sizeof(int), 1, fp, nullptr, error); utils::sfread(FLERR, &tablength, sizeof(int), 1, fp, nullptr, error); } MPI_Bcast(&tabstyle, 1, MPI_INT, 0, world); MPI_Bcast(&tablength, 1, MPI_INT, 0, world); } /* ---------------------------------------------------------------------- */ double AngleTable::single(int type, int i1, int i2, int i3) { double **x = atom->x; double delx1 = x[i1][0] - x[i2][0]; double dely1 = x[i1][1] - x[i2][1]; double delz1 = x[i1][2] - x[i2][2]; domain->minimum_image(delx1, dely1, delz1); double r1 = sqrt(delx1 * delx1 + dely1 * dely1 + delz1 * delz1); double delx2 = x[i3][0] - x[i2][0]; double dely2 = x[i3][1] - x[i2][1]; double delz2 = x[i3][2] - x[i2][2]; domain->minimum_image(delx2, dely2, delz2); double r2 = sqrt(delx2 * delx2 + dely2 * dely2 + delz2 * delz2); double c = delx1 * delx2 + dely1 * dely2 + delz1 * delz2; c /= r1 * r2; if (c > 1.0) c = 1.0; if (c < -1.0) c = -1.0; double theta = acos(c); double u = 0.0; u_lookup(type, theta, u); return u; } /* ---------------------------------------------------------------------- */ void AngleTable::null_table(Table *tb) { tb->afile = tb->efile = tb->ffile = nullptr; tb->e2file = tb->f2file = nullptr; tb->ang = tb->e = tb->de = nullptr; tb->f = tb->df = tb->e2 = tb->f2 = nullptr; } /* ---------------------------------------------------------------------- */ void AngleTable::free_table(Table *tb) { memory->destroy(tb->afile); memory->destroy(tb->efile); memory->destroy(tb->ffile); memory->destroy(tb->e2file); memory->destroy(tb->f2file); memory->destroy(tb->ang); memory->destroy(tb->e); memory->destroy(tb->de); memory->destroy(tb->f); memory->destroy(tb->df); memory->destroy(tb->e2); memory->destroy(tb->f2); } /* ---------------------------------------------------------------------- read table file, only called by proc 0 ------------------------------------------------------------------------- */ void AngleTable::read_table(Table *tb, char *file, char *keyword) { TableFileReader reader(lmp, file, "angle"); char *line = reader.find_section_start(keyword); if (!line) { error->one(FLERR, "Did not find keyword in table file"); } // read args on 2nd line of section // allocate table arrays for file values line = reader.next_line(); param_extract(tb, line); memory->create(tb->afile, tb->ninput, "angle:afile"); memory->create(tb->efile, tb->ninput, "angle:efile"); memory->create(tb->ffile, tb->ninput, "angle:ffile"); // read a,e,f table values from file reader.skip_line(); for (int i = 0; i < tb->ninput; i++) { line = reader.next_line(); if (!line) error->one(FLERR, "Data missing when parsing angle table '{}' line {} of {}.", keyword, i + 1, tb->ninput); try { ValueTokenizer values(line); values.next_int(); tb->afile[i] = values.next_double(); tb->efile[i] = values.next_double(); tb->ffile[i] = values.next_double(); } catch (TokenizerException &e) { error->one(FLERR, "Error parsing angle table '{}' line {} of {}. {}\nLine was: {}", keyword, i + 1, tb->ninput, e.what(), line); } } } /* ---------------------------------------------------------------------- build spline representation of e,f over entire range of read-in table this function sets these values in e2file,f2file ------------------------------------------------------------------------- */ void AngleTable::spline_table(Table *tb) { memory->create(tb->e2file, tb->ninput, "angle:e2file"); memory->create(tb->f2file, tb->ninput, "angle:f2file"); double ep0 = -tb->ffile[0]; double epn = -tb->ffile[tb->ninput - 1]; spline(tb->afile, tb->efile, tb->ninput, ep0, epn, tb->e2file); if (tb->fpflag == 0) { tb->fplo = (tb->ffile[1] - tb->ffile[0]) / (tb->afile[1] - tb->afile[0]); tb->fphi = (tb->ffile[tb->ninput - 1] - tb->ffile[tb->ninput - 2]) / (tb->afile[tb->ninput - 1] - tb->afile[tb->ninput - 2]); } double fp0 = tb->fplo; double fpn = tb->fphi; spline(tb->afile, tb->ffile, tb->ninput, fp0, fpn, tb->f2file); } /* ---------------------------------------------------------------------- compute a,e,f vectors from splined values ------------------------------------------------------------------------- */ void AngleTable::compute_table(Table *tb) { // delta = table spacing in angle for N-1 bins int tlm1 = tablength - 1; tb->delta = MY_PI / tlm1; tb->invdelta = 1.0 / tb->delta; tb->deltasq6 = tb->delta * tb->delta / 6.0; // N-1 evenly spaced bins in angle from 0 to PI // ang,e,f = value at lower edge of bin // de,df values = delta values of e,f // ang,e,f are N in length so de,df arrays can compute difference memory->create(tb->ang, tablength, "angle:ang"); memory->create(tb->e, tablength, "angle:e"); memory->create(tb->de, tablength, "angle:de"); memory->create(tb->f, tablength, "angle:f"); memory->create(tb->df, tablength, "angle:df"); memory->create(tb->e2, tablength, "angle:e2"); memory->create(tb->f2, tablength, "angle:f2"); double a; for (int i = 0; i < tablength; i++) { a = i * tb->delta; tb->ang[i] = a; tb->e[i] = splint(tb->afile, tb->efile, tb->e2file, tb->ninput, a); tb->f[i] = splint(tb->afile, tb->ffile, tb->f2file, tb->ninput, a); } for (int i = 0; i < tlm1; i++) { tb->de[i] = tb->e[i + 1] - tb->e[i]; tb->df[i] = tb->f[i + 1] - tb->f[i]; } // get final elements from linear extrapolation tb->de[tlm1] = 2.0 * tb->de[tlm1 - 1] - tb->de[tlm1 - 2]; tb->df[tlm1] = 2.0 * tb->df[tlm1 - 1] - tb->df[tlm1 - 2]; double ep0 = -tb->f[0]; double epn = -tb->f[tlm1]; spline(tb->ang, tb->e, tablength, ep0, epn, tb->e2); spline(tb->ang, tb->f, tablength, tb->fplo, tb->fphi, tb->f2); } /* ---------------------------------------------------------------------- extract attributes from parameter line in table section format of line: N value FP fplo fphi EQ theta0 N is required, other params are optional ------------------------------------------------------------------------- */ void AngleTable::param_extract(Table *tb, char *line) { tb->ninput = 0; tb->fpflag = 0; tb->theta0 = MY_PI; try { ValueTokenizer values(line); while (values.has_next()) { std::string word = values.next_string(); if (word == "N") { tb->ninput = values.next_int(); } else if (word == "FP") { tb->fpflag = 1; tb->fplo = values.next_double(); tb->fphi = values.next_double(); tb->fplo *= RAD2DEG * RAD2DEG; tb->fphi *= RAD2DEG * RAD2DEG; } else if (word == "EQ") { tb->theta0 = DEG2RAD * values.next_double(); } else { error->one(FLERR, "Invalid keyword in angle table parameters"); } } } catch (TokenizerException &e) { error->one(FLERR, e.what()); } if (tb->ninput == 0) error->one(FLERR, "Angle table parameters did not set N"); } /* ---------------------------------------------------------------------- broadcast read-in table info from proc 0 to other procs this function communicates these values in Table: ninput,afile,efile,ffile,fpflag,fplo,fphi,theta0 ------------------------------------------------------------------------- */ void AngleTable::bcast_table(Table *tb) { MPI_Bcast(&tb->ninput, 1, MPI_INT, 0, world); int me; MPI_Comm_rank(world, &me); if (me > 0) { memory->create(tb->afile, tb->ninput, "angle:afile"); memory->create(tb->efile, tb->ninput, "angle:efile"); memory->create(tb->ffile, tb->ninput, "angle:ffile"); } MPI_Bcast(tb->afile, tb->ninput, MPI_DOUBLE, 0, world); MPI_Bcast(tb->efile, tb->ninput, MPI_DOUBLE, 0, world); MPI_Bcast(tb->ffile, tb->ninput, MPI_DOUBLE, 0, world); MPI_Bcast(&tb->fpflag, 1, MPI_INT, 0, world); if (tb->fpflag) { MPI_Bcast(&tb->fplo, 1, MPI_DOUBLE, 0, world); MPI_Bcast(&tb->fphi, 1, MPI_DOUBLE, 0, world); } MPI_Bcast(&tb->theta0, 1, MPI_DOUBLE, 0, world); } /* ---------------------------------------------------------------------- spline and splint routines modified from Numerical Recipes ------------------------------------------------------------------------- */ void AngleTable::spline(double *x, double *y, int n, double yp1, double ypn, double *y2) { int i, k; double p, qn, sig, un; auto u = new double[n]; if (yp1 > 0.99e300) y2[0] = u[0] = 0.0; else { y2[0] = -0.5; u[0] = (3.0 / (x[1] - x[0])) * ((y[1] - y[0]) / (x[1] - x[0]) - yp1); } for (i = 1; i < n - 1; i++) { sig = (x[i] - x[i - 1]) / (x[i + 1] - x[i - 1]); p = sig * y2[i - 1] + 2.0; y2[i] = (sig - 1.0) / p; u[i] = (y[i + 1] - y[i]) / (x[i + 1] - x[i]) - (y[i] - y[i - 1]) / (x[i] - x[i - 1]); u[i] = (6.0 * u[i] / (x[i + 1] - x[i - 1]) - sig * u[i - 1]) / p; } if (ypn > 0.99e300) qn = un = 0.0; else { qn = 0.5; un = (3.0 / (x[n - 1] - x[n - 2])) * (ypn - (y[n - 1] - y[n - 2]) / (x[n - 1] - x[n - 2])); } y2[n - 1] = (un - qn * u[n - 2]) / (qn * y2[n - 2] + 1.0); for (k = n - 2; k >= 0; k--) y2[k] = y2[k] * y2[k + 1] + u[k]; delete[] u; } /* ---------------------------------------------------------------------- */ double AngleTable::splint(double *xa, double *ya, double *y2a, int n, double x) { int klo, khi, k; double h, b, a, y; klo = 0; khi = n - 1; while (khi - klo > 1) { k = (khi + klo) >> 1; if (xa[k] > x) khi = k; else klo = k; } h = xa[khi] - xa[klo]; a = (xa[khi] - x) / h; b = (x - xa[klo]) / h; y = a * ya[klo] + b * ya[khi] + ((a * a * a - a) * y2a[klo] + (b * b * b - b) * y2a[khi]) * (h * h) / 6.0; return y; } /* ---------------------------------------------------------------------- calculate potential u and force f at angle x ------------------------------------------------------------------------- */ void AngleTable::uf_lookup(int type, double x, double &u, double &f) { if (!std::isfinite(x)) { error->one(FLERR, "Illegal angle in angle style table"); } double fraction, a, b; const Table *tb = &tables[tabindex[type]]; // invdelta is based on tablength-1 int itable = static_cast(x * tb->invdelta); if (itable < 0) itable = 0; if (itable >= tablength) itable = tablength - 1; if (tabstyle == LINEAR) { fraction = (x - tb->ang[itable]) * tb->invdelta; u = tb->e[itable] + fraction * tb->de[itable]; f = tb->f[itable] + fraction * tb->df[itable]; } else if (tabstyle == SPLINE) { fraction = (x - tb->ang[itable]) * tb->invdelta; b = (x - tb->ang[itable]) * tb->invdelta; a = 1.0 - b; u = a * tb->e[itable] + b * tb->e[itable + 1] + ((a * a * a - a) * tb->e2[itable] + (b * b * b - b) * tb->e2[itable + 1]) * tb->deltasq6; f = a * tb->f[itable] + b * tb->f[itable + 1] + ((a * a * a - a) * tb->f2[itable] + (b * b * b - b) * tb->f2[itable + 1]) * tb->deltasq6; } } /* ---------------------------------------------------------------------- calculate potential u at angle x ------------------------------------------------------------------------- */ void AngleTable::u_lookup(int type, double x, double &u) { if (!std::isfinite(x)) { error->one(FLERR, "Illegal angle in angle style table"); } double fraction, a, b; const Table *tb = &tables[tabindex[type]]; int itable = static_cast(x * tb->invdelta); if (itable < 0) itable = 0; if (itable >= tablength) itable = tablength - 1; if (tabstyle == LINEAR) { fraction = (x - tb->ang[itable]) * tb->invdelta; u = tb->e[itable] + fraction * tb->de[itable]; } else if (tabstyle == SPLINE) { fraction = (x - tb->ang[itable]) * tb->invdelta; b = (x - tb->ang[itable]) * tb->invdelta; a = 1.0 - b; u = a * tb->e[itable] + b * tb->e[itable + 1] + ((a * a * a - a) * tb->e2[itable] + (b * b * b - b) * tb->e2[itable + 1]) * tb->deltasq6; } }