from __future__ import print_function from lammps import lammps import numpy as np class LAMMPSFix(object): def __init__(self, ptr, group_name="all"): self.lmp = lammps(ptr=ptr) self.group_name = group_name class LAMMPSFixMove(LAMMPSFix): def __init__(self, ptr, group_name="all"): super(LAMMPSFixMove, self).__init__(ptr, group_name) def init(self): pass def initial_integrate(self, vflag): pass def final_integrate(self): pass def initial_integrate_respa(self, vflag, ilevel, iloop): pass def final_integrate_respa(self, ilevel, iloop): pass def reset_dt(self): pass class NVE(LAMMPSFixMove): """ Python implementation of fix/nve """ def __init__(self, ptr, group_name="all"): super(NVE, self).__init__(ptr) assert(self.group_name == "all") def init(self): dt = self.lmp.extract_global("dt") ftm2v = self.lmp.extract_global("ftm2v") self.ntypes = self.lmp.extract_global("ntypes") self.dtv = dt self.dtf = 0.5 * dt * ftm2v def initial_integrate(self, vflag): mass = self.lmp.numpy.extract_atom("mass") atype = self.lmp.numpy.extract_atom("type") x = self.lmp.numpy.extract_atom("x") v = self.lmp.numpy.extract_atom("v") f = self.lmp.numpy.extract_atom("f") for i in range(x.shape[0]): dtfm = self.dtf / mass[int(atype[i])] v[i,:]+= dtfm * f[i,:] x[i,:] += self.dtv * v[i,:] def final_integrate(self): mass = self.lmp.numpy.extract_atom("mass") atype = self.lmp.numpy.extract_atom("type") v = self.lmp.numpy.extract_atom("v") f = self.lmp.numpy.extract_atom("f") for i in range(v.shape[0]): dtfm = self.dtf / mass[int(atype[i])] v[i,:] += dtfm * f[i,:] class NVE_Opt(LAMMPSFixMove): """ Performance-optimized Python implementation of fix/nve """ def __init__(self, ptr, group_name="all"): super(NVE_Opt, self).__init__(ptr) assert(self.group_name == "all") def init(self): dt = self.lmp.extract_global("dt") ftm2v = self.lmp.extract_global("ftm2v") self.ntypes = self.lmp.extract_global("ntypes") self.dtv = dt self.dtf = 0.5 * dt * ftm2v def initial_integrate(self, vflag): mass = self.lmp.numpy.extract_atom("mass") atype = self.lmp.numpy.extract_atom("type") x = self.lmp.numpy.extract_atom("x") v = self.lmp.numpy.extract_atom("v") f = self.lmp.numpy.extract_atom("f") dtf = self.dtf dtv = self.dtv dtfm = dtf / np.take(mass, atype) for d in range(x.shape[1]): v[:,d] += dtfm * f[:,d] x[:,d] += dtv * v[:,d] def final_integrate(self): mass = self.lmp.numpy.extract_atom("mass") atype = self.lmp.numpy.extract_atom("type") v = self.lmp.numpy.extract_atom("v") f = self.lmp.numpy.extract_atom("f") dtf = self.dtf dtfm = dtf / np.take(mass, atype) for d in range(v.shape[1]): v[:,d] += dtfm * f[:,d]