from lammps.mliap.mliap_unified_abc import MLIAPUnified import numpy as np class MLIAPUnifiedJAX(MLIAPUnified): """Test implementation for MLIAPUnified.""" def __init__(self, element_types, epsilon=1.0, sigma=1.0, rcutfac=1.25): # ARGS: interface, element_types, ndescriptors, nparams, rcutfac super().__init__(None, element_types, 1, 3, rcutfac) # Mimicking the LJ pair-style: # pair_style lj/cut 2.5 # pair_coeff * * 1 1 self.epsilon = epsilon self.sigma = sigma def compute_gradients(self, data): """Test compute_gradients.""" def compute_descriptors(self, data): """Test compute_descriptors.""" def compute_forces(self, data): """Test compute_forces.""" eij, fij = self.compute_pair_ef(data) data.update_pair_energy(eij) data.update_pair_forces(fij) def compute_pair_ef(self, data): rij = data.rij r2inv = 1.0 / np.sum(rij ** 2, axis=1) r6inv = r2inv * r2inv * r2inv lj1 = 4.0 * self.epsilon * self.sigma**12 lj2 = 4.0 * self.epsilon * self.sigma**6 eij = r6inv * (lj1 * r6inv - lj2) fij = r6inv * (3.0 * lj2 - 6.0 * lj2 * r6inv) * r2inv fij = fij[:, np.newaxis] * rij return eij, fij