/* ---------------------------------------------------------------------- LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator https://www.lammps.org/, Sandia National Laboratories LAMMPS development team: developers@lammps.org Copyright (2003) Sandia Corporation. Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains certain rights in this software. This software is distributed under the GNU General Public License. See the README file in the top-level LAMMPS directory. ------------------------------------------------------------------------- */ /* ---------------------------------------------------------------------- Contributing author: Aidan Thompson (SNL) ------------------------------------------------------------------------- */ #include "mliap_descriptor_snap.h" #include "atom.h" #include "comm.h" #include "error.h" #include "memory.h" #include "mliap_data.h" #include "pair_mliap.h" #include "sna.h" #include "tokenizer.h" #include #include using namespace LAMMPS_NS; #define MAXLINE 1024 #define MAXWORD 3 /* ---------------------------------------------------------------------- */ MLIAPDescriptorSNAP::MLIAPDescriptorSNAP(LAMMPS *_lmp, char *paramfilename) : Pointers(_lmp), MLIAPDescriptor(_lmp) { radelem = nullptr; wjelem = nullptr; snaptr = nullptr; sinnerelem = nullptr; dinnerelem = nullptr; read_paramfile(paramfilename); snaptr = new SNA(lmp, rfac0, twojmax, rmin0, switchflag, bzeroflag, chemflag, bnormflag, wselfallflag, nelements, switchinnerflag); ndescriptors = snaptr->ncoeff; } /* ---------------------------------------------------------------------- */ MLIAPDescriptorSNAP::~MLIAPDescriptorSNAP() { memory->destroy(radelem); memory->destroy(wjelem); delete snaptr; memory->destroy(sinnerelem); memory->destroy(dinnerelem); } /* ---------------------------------------------------------------------- compute descriptors for each atom ---------------------------------------------------------------------- */ void MLIAPDescriptorSNAP::compute_descriptors(class MLIAPData *data) { int ij = 0; for (int ii = 0; ii < data->nlistatoms; ii++) { const int ielem = data->ielems[ii]; // insure rij, inside, wj, and rcutij are of size jnum const int jnum = data->numneighs[ii]; snaptr->grow_rij(jnum); int ninside = 0; for (int jj = 0; jj < jnum; jj++) { const int j = data->jatoms[ij]; const int jelem = data->jelems[ij]; const double *delr = data->rij[ij]; snaptr->rij[ninside][0] = delr[0]; snaptr->rij[ninside][1] = delr[1]; snaptr->rij[ninside][2] = delr[2]; snaptr->inside[ninside] = j; snaptr->wj[ninside] = wjelem[jelem]; snaptr->rcutij[ninside] = sqrt(cutsq[ielem][jelem]); if (switchinnerflag) { snaptr->sinnerij[ninside] = 0.5 * (sinnerelem[ielem] + sinnerelem[jelem]); snaptr->dinnerij[ninside] = 0.5 * (dinnerelem[ielem] + dinnerelem[jelem]); } if (chemflag) snaptr->element[ninside] = jelem; ninside++; ij++; } if (chemflag) snaptr->compute_ui(ninside, ielem); else snaptr->compute_ui(ninside, 0); snaptr->compute_zi(); if (chemflag) snaptr->compute_bi(ielem); else snaptr->compute_bi(0); for (int icoeff = 0; icoeff < data->ndescriptors; icoeff++) data->descriptors[ii][icoeff] = snaptr->blist[icoeff]; } } /* ---------------------------------------------------------------------- compute forces for each atom ---------------------------------------------------------------------- */ void MLIAPDescriptorSNAP::compute_forces(class MLIAPData *data) { double fij[3]; double **f = atom->f; int ij = 0; for (int ii = 0; ii < data->nlistatoms; ii++) { const int i = data->iatoms[ii]; const int ielem = data->ielems[ii]; // insure rij, inside, wj, and rcutij are of size jnum const int jnum = data->numneighs[ii]; snaptr->grow_rij(jnum); int ninside = 0; for (int jj = 0; jj < jnum; jj++) { const int j = data->jatoms[ij]; const int jelem = data->jelems[ij]; const double *delr = data->rij[ij]; snaptr->rij[ninside][0] = delr[0]; snaptr->rij[ninside][1] = delr[1]; snaptr->rij[ninside][2] = delr[2]; snaptr->inside[ninside] = j; snaptr->wj[ninside] = wjelem[jelem]; snaptr->rcutij[ninside] = sqrt(cutsq[ielem][jelem]); if (switchinnerflag) { snaptr->sinnerij[ninside] = 0.5 * (sinnerelem[ielem] + sinnerelem[jelem]); snaptr->dinnerij[ninside] = 0.5 * (dinnerelem[ielem] + dinnerelem[jelem]); } if (chemflag) snaptr->element[ninside] = jelem; ninside++; ij++; } // compute Ui, Yi for atom I if (chemflag) snaptr->compute_ui(ninside, ielem); else snaptr->compute_ui(ninside, 0); // for neighbors of I within cutoff: // compute Fij = dEi/dRj = -dEi/dRi // add to Fi, subtract from Fj snaptr->compute_yi(data->betas[ii]); for (int jj = 0; jj < ninside; jj++) { int j = snaptr->inside[jj]; snaptr->compute_duidrj(jj); snaptr->compute_deidrj(fij); f[i][0] += fij[0]; f[i][1] += fij[1]; f[i][2] += fij[2]; f[j][0] -= fij[0]; f[j][1] -= fij[1]; f[j][2] -= fij[2]; // add in global and per-atom virial contributions // this is optional and has no effect on force calculation if (data->vflag) data->pairmliap->v_tally(i, j, fij, snaptr->rij[jj]); } } } /* ---------------------------------------------------------------------- calculate gradients of forces w.r.t. parameters ---------------------------------------------------------------------- */ void MLIAPDescriptorSNAP::compute_force_gradients(class MLIAPData *data) { int ij = 0; for (int ii = 0; ii < data->nlistatoms; ii++) { const int i = data->iatoms[ii]; const int ielem = data->ielems[ii]; // insure rij, inside, wj, and rcutij are of size jnum const int jnum = data->numneighs[ii]; snaptr->grow_rij(jnum); int ninside = 0; for (int jj = 0; jj < jnum; jj++) { const int j = data->jatoms[ij]; const int jelem = data->jelems[ij]; const double *delr = data->rij[ij]; snaptr->rij[ninside][0] = delr[0]; snaptr->rij[ninside][1] = delr[1]; snaptr->rij[ninside][2] = delr[2]; snaptr->inside[ninside] = j; snaptr->wj[ninside] = wjelem[jelem]; snaptr->rcutij[ninside] = sqrt(cutsq[ielem][jelem]); if (switchinnerflag) { snaptr->sinnerij[ninside] = 0.5 * (sinnerelem[ielem] + sinnerelem[jelem]); snaptr->dinnerij[ninside] = 0.5 * (dinnerelem[ielem] + dinnerelem[jelem]); } if (chemflag) snaptr->element[ninside] = jelem; ninside++; ij++; } if (chemflag) snaptr->compute_ui(ninside, ielem); else snaptr->compute_ui(ninside, 0); snaptr->compute_zi(); if (chemflag) snaptr->compute_bi(ielem); else snaptr->compute_bi(0); for (int jj = 0; jj < ninside; jj++) { const int j = snaptr->inside[jj]; snaptr->compute_duidrj(jj); snaptr->compute_dbidrj(); // Accumulate gamma_lk*dB_k/dRi, -gamma_lk**dB_k/dRj for (int inz = 0; inz < data->gamma_nnz; inz++) { const int l = data->gamma_row_index[ii][inz]; const int k = data->gamma_col_index[ii][inz]; data->gradforce[i][l] += data->gamma[ii][inz] * snaptr->dblist[k][0]; data->gradforce[i][l + data->yoffset] += data->gamma[ii][inz] * snaptr->dblist[k][1]; data->gradforce[i][l + data->zoffset] += data->gamma[ii][inz] * snaptr->dblist[k][2]; data->gradforce[j][l] -= data->gamma[ii][inz] * snaptr->dblist[k][0]; data->gradforce[j][l + data->yoffset] -= data->gamma[ii][inz] * snaptr->dblist[k][1]; data->gradforce[j][l + data->zoffset] -= data->gamma[ii][inz] * snaptr->dblist[k][2]; } } } } /* ---------------------------------------------------------------------- compute descriptor gradients for each neighbor atom ---------------------------------------------------------------------- */ void MLIAPDescriptorSNAP::compute_descriptor_gradients(class MLIAPData *data) { int ij = 0; for (int ii = 0; ii < data->nlistatoms; ii++) { const int ielem = data->ielems[ii]; // insure rij, inside, wj, and rcutij are of size jnum const int jnum = data->numneighs[ii]; snaptr->grow_rij(jnum); int ij0 = ij; int ninside = 0; for (int jj = 0; jj < jnum; jj++) { const int j = data->jatoms[ij]; const int jelem = data->jelems[ij]; const double *delr = data->rij[ij]; snaptr->rij[ninside][0] = delr[0]; snaptr->rij[ninside][1] = delr[1]; snaptr->rij[ninside][2] = delr[2]; snaptr->inside[ninside] = j; snaptr->wj[ninside] = wjelem[jelem]; snaptr->rcutij[ninside] = sqrt(cutsq[ielem][jelem]); if (switchinnerflag) { snaptr->sinnerij[ninside] = 0.5 * (sinnerelem[ielem] + sinnerelem[jelem]); snaptr->dinnerij[ninside] = 0.5 * (dinnerelem[ielem] + dinnerelem[jelem]); } if (chemflag) snaptr->element[ninside] = jelem; ninside++; ij++; } if (chemflag) snaptr->compute_ui(ninside, ielem); else snaptr->compute_ui(ninside, 0); snaptr->compute_zi(); if (chemflag) snaptr->compute_bi(ielem); else snaptr->compute_bi(0); ij = ij0; for (int jj = 0; jj < ninside; jj++) { snaptr->compute_duidrj(jj); snaptr->compute_dbidrj(); // Accumulate dB_k^i/dRi, dB_k^i/dRj for (int k = 0; k < data->ndescriptors; k++) { data->graddesc[ij][k][0] = snaptr->dblist[k][0]; data->graddesc[ij][k][1] = snaptr->dblist[k][1]; data->graddesc[ij][k][2] = snaptr->dblist[k][2]; } ij++; } } } /* ---------------------------------------------------------------------- set coeffs for one or more type pairs ------------------------------------------------------------------------- */ void MLIAPDescriptorSNAP::init() { snaptr->init(); } /* ---------------------------------------------------------------------- */ void MLIAPDescriptorSNAP::read_paramfile(char *paramfilename) { // set flags for required keywords int rcutfacflag = 0; int twojmaxflag = 0; int nelementsflag = 0; int elementsflag = 0; int radelemflag = 0; int wjelemflag = 0; // Set defaults for optional keywords rfac0 = 0.99363; rmin0 = 0.0; switchflag = 1; bzeroflag = 1; chemflag = 0; bnormflag = 0; wselfallflag = 0; switchinnerflag = 0; // set local input checks int sinnerflag = 0; int dinnerflag = 0; for (int i = 0; i < nelements; i++) delete[] elements[i]; delete[] elements; memory->destroy(radelem); memory->destroy(wjelem); memory->destroy(cutsq); // open SNAP parameter file on proc 0 FILE *fpparam; if (comm->me == 0) { fpparam = utils::open_potential(paramfilename, lmp, nullptr); if (fpparam == nullptr) error->one(FLERR, "Cannot open SNAP parameter file {}: {}", paramfilename, utils::getsyserror()); } char line[MAXLINE], *ptr; int eof = 0; int n; while (true) { if (comm->me == 0) { ptr = fgets(line, MAXLINE, fpparam); if (ptr == nullptr) { eof = 1; fclose(fpparam); } else n = strlen(line) + 1; } MPI_Bcast(&eof, 1, MPI_INT, 0, world); if (eof) break; MPI_Bcast(&n, 1, MPI_INT, 0, world); MPI_Bcast(line, n, MPI_CHAR, 0, world); // strip comment, skip line if blank if ((ptr = strchr(line, '#'))) *ptr = '\0'; // strip single and double quotes from words Tokenizer words(line, "\"' \t\n\t\f"); if (words.count() == 0) continue; auto keywd = words.next(); // check for keywords with one value per element if ((keywd == "elems") || (keywd == "radelems") || (keywd == "welems") || (keywd == "sinnerelems") || (keywd == "dinnerelems")) { if ((nelementsflag == 0) || ((int) words.count() != nelements + 1)) error->all(FLERR, "Incorrect SNAP parameter file"); if (comm->me == 0) utils::logmesg(lmp, "SNAP keyword {} \n", utils::trim(line)); if (keywd == "elems") { for (int ielem = 0; ielem < nelements; ielem++) elements[ielem] = utils::strdup(words.next()); elementsflag = 1; } else if (keywd == "radelems") { for (int ielem = 0; ielem < nelements; ielem++) radelem[ielem] = utils::numeric(FLERR, words.next(), false, lmp); radelemflag = 1; } else if (keywd == "welems") { for (int ielem = 0; ielem < nelements; ielem++) wjelem[ielem] = utils::numeric(FLERR, words.next(), false, lmp); wjelemflag = 1; } else if (keywd == "sinnerelems") { for (int ielem = 0; ielem < nelements; ielem++) sinnerelem[ielem] = utils::numeric(FLERR, words.next(), false, lmp); sinnerflag = 1; } else if (keywd == "dinnerelems") { for (int ielem = 0; ielem < nelements; ielem++) dinnerelem[ielem] = utils::numeric(FLERR, words.next(), false, lmp); dinnerflag = 1; } } else { // all other keywords take one value if (words.count() != 2) error->all(FLERR, "Incorrect SNAP parameter file"); auto keyval = words.next(); if (comm->me == 0) utils::logmesg(lmp, "SNAP keyword {} {} \n", keywd, keyval); if (keywd == "nelems") { nelements = utils::inumeric(FLERR, keyval, false, lmp); elements = new char *[nelements]; memory->create(radelem, nelements, "mliap_snap_descriptor:radelem"); memory->create(wjelem, nelements, "mliap_snap_descriptor:wjelem"); memory->create(sinnerelem, nelements, "mliap_snap_descriptor:sinner"); memory->create(dinnerelem, nelements, "mliap_snap_descriptor:dinner"); nelementsflag = 1; } else if (keywd == "rcutfac") { rcutfac = utils::numeric(FLERR, keyval, false, lmp); rcutfacflag = 1; } else if (keywd == "twojmax") { twojmax = utils::inumeric(FLERR, keyval, false, lmp); twojmaxflag = 1; } else if (keywd == "rfac0") rfac0 = utils::numeric(FLERR, keyval, false, lmp); else if (keywd == "rmin0") rmin0 = utils::numeric(FLERR, keyval, false, lmp); else if (keywd == "switchflag") switchflag = utils::inumeric(FLERR, keyval, false, lmp); else if (keywd == "bzeroflag") bzeroflag = utils::inumeric(FLERR, keyval, false, lmp); else if (keywd == "chemflag") chemflag = utils::inumeric(FLERR, keyval, false, lmp); else if (keywd == "bnormflag") bnormflag = utils::inumeric(FLERR, keyval, false, lmp); else if (keywd == "wselfallflag") wselfallflag = utils::inumeric(FLERR, keyval, false, lmp); else if (keywd == "switchinnerflag") switchinnerflag = utils::inumeric(FLERR, keyval, false, lmp); else error->all(FLERR, "Incorrect SNAP parameter file"); } } if (!rcutfacflag || !twojmaxflag || !nelementsflag || !elementsflag || !radelemflag || !wjelemflag) error->all(FLERR, "Incorrect SNAP parameter file"); if (switchinnerflag && !(sinnerflag && dinnerflag)) error->all(FLERR, "Incorrect SNAP parameter file"); if (!switchinnerflag && (sinnerflag || dinnerflag)) error->all(FLERR, "Incorrect SNAP parameter file"); // construct cutsq double cut; cutmax = 0.0; memory->create(cutsq, nelements, nelements, "mliap/descriptor/snap:cutsq"); for (int ielem = 0; ielem < nelements; ielem++) { cut = 2.0 * radelem[ielem] * rcutfac; if (cut > cutmax) cutmax = cut; cutsq[ielem][ielem] = cut * cut; for (int jelem = ielem + 1; jelem < nelements; jelem++) { cut = (radelem[ielem] + radelem[jelem]) * rcutfac; cutsq[ielem][jelem] = cutsq[jelem][ielem] = cut * cut; } } } /* ---------------------------------------------------------------------- memory usage ------------------------------------------------------------------------- */ double MLIAPDescriptorSNAP::memory_usage() { double bytes = MLIAPDescriptor::memory_usage(); bytes += snaptr->memory_usage(); // SNA object return bytes; }