from lammps.mliap.mliap_unified_abc import MLIAPUnified import numpy as np import jax import jax.numpy as jnp from jax import jit from functools import partial # /- ensure epsilon and sigma are treated as compile-time constants @partial(jit, static_argnums=(0, 1)) def lj_potential(epsilon: float, sigma: float, rij): # a pure function we can differentiate: def _tot_e(rij): r2inv = 1.0 / jnp.sum(rij ** 2, axis=1) r6inv = r2inv * r2inv * r2inv lj1 = 4.0 * epsilon * sigma**12 lj2 = 4.0 * epsilon * sigma**6 eij = r6inv * (lj1 * r6inv - lj2) return jnp.sum(eij) # /- construct a function computing _tot_e and its derivative tot_e, fij = jax.value_and_grad(_tot_e)(rij) return tot_e, fij class MLIAPUnifiedJAX(MLIAPUnified): """Test implementation for MLIAPUnified.""" epsilon: float sigma: float def __init__(self, element_types, epsilon=1.0, sigma=1.0, rcutfac=1.25): # ARGS: interface, element_types, ndescriptors, nparams, rcutfac super().__init__(None, element_types, 1, 3, rcutfac) # Mimicking the LJ pair-style: # pair_style lj/cut 2.5 # pair_coeff * * 1 1 self.epsilon = epsilon self.sigma = sigma # TODO: Take this from the LAMMPS Cython side. self.npair_max = 250000 def compute_gradients(self, data): """Test compute_gradients.""" def compute_descriptors(self, data): """Test compute_descriptors.""" def compute_forces(self, data): """Test compute_forces.""" rij = data.rij # TODO: Take max npairs from the LAMMPS Cython side. if (data.npairs > self.npair_max): self.npair_max = data.npairs npad = self.npair_max - data.npairs # TODO: Take pre-padded rij from the LAMMPS Cython side. # This might account for ~2-3x slowdown compared to original LJ. rij = np.pad(rij, ((0,npad), (0,0)), 'constant') e_tot, fij = lj_potential(rij) data.energy = e_tot.item() data.update_pair_forces(np.array(fij, dtype=np.float64))