// clang-format off /* ---------------------------------------------------------------------- LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator https://www.lammps.org/, Sandia National Laboratories Steve Plimpton, sjplimp@sandia.gov Copyright (2003) Sandia Corporation. Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains certain rights in this software. This software is distributed under the GNU General Public License. See the README file in the top-level LAMMPS directory. ------------------------------------------------------------------------- */ #include "group.h" #include "atom.h" #include "comm.h" #include "compute.h" #include "domain.h" #include "dump.h" #include "error.h" #include "fix.h" #include "force.h" #include "input.h" #include "math_extra.h" #include "math_eigen.h" #include "memory.h" #include "modify.h" #include "output.h" #include "region.h" #include "tokenizer.h" #include "variable.h" #include "exceptions.h" #include #include #include #include using namespace LAMMPS_NS; #define MAX_GROUP 32 #define EPSILON 1.0e-6 enum{NONE,TYPE,MOLECULE,ID}; enum{LT,LE,GT,GE,EQ,NEQ,BETWEEN}; #define BIG 1.0e20 /* ---------------------------------------------------------------------- initialize group memory ------------------------------------------------------------------------- */ Group::Group(LAMMPS *lmp) : Pointers(lmp) { MPI_Comm_rank(world,&me); names = new char*[MAX_GROUP]; bitmask = new int[MAX_GROUP]; inversemask = new int[MAX_GROUP]; dynamic = new int[MAX_GROUP]; for (int i = 0; i < MAX_GROUP; i++) names[i] = nullptr; for (int i = 0; i < MAX_GROUP; i++) bitmask[i] = 1 << i; for (int i = 0; i < MAX_GROUP; i++) inversemask[i] = bitmask[i] ^ ~0; for (int i = 0; i < MAX_GROUP; i++) dynamic[i] = 0; // create "all" group names[0] = utils::strdup("all"); ngroup = 1; } /* ---------------------------------------------------------------------- free all memory ------------------------------------------------------------------------- */ Group::~Group() { for (int i = 0; i < MAX_GROUP; i++) delete [] names[i]; delete [] names; delete [] bitmask; delete [] inversemask; delete [] dynamic; } /* ---------------------------------------------------------------------- assign atoms to a new or existing group ------------------------------------------------------------------------- */ void Group::assign(int narg, char **arg) { int i; if (domain->box_exist == 0) error->all(FLERR,"Group command before simulation box is defined"); if (narg < 2) error->all(FLERR,"Illegal group command"); // delete the group if not being used elsewhere // clear mask of each atom assigned to this group if (strcmp(arg[1],"delete") == 0) { if (narg != 2) error->all(FLERR,"Illegal group command"); int igroup = find(arg[0]); if (igroup == -1) error->all(FLERR,"Could not find group delete group ID"); if (igroup == 0) error->all(FLERR,"Cannot delete group all"); for (const auto &fix : modify->get_fix_list()) if (fix->igroup == igroup) error->all(FLERR,"Cannot delete group currently used by a fix"); for (i = 0; i < modify->ncompute; i++) if (modify->compute[i]->igroup == igroup) error->all(FLERR,"Cannot delete group currently used by a compute"); for (i = 0; i < output->ndump; i++) if (output->dump[i]->igroup == igroup) error->all(FLERR,"Cannot delete group currently used by a dump"); if (atom->firstgroupname && strcmp(arg[0],atom->firstgroupname) == 0) error->all(FLERR, "Cannot delete group currently used by atom_modify first"); int *mask = atom->mask; int nlocal = atom->nlocal; int bits = inversemask[igroup]; for (i = 0; i < nlocal; i++) mask[i] &= bits; if (dynamic[igroup]) modify->delete_fix(std::string("GROUP_") + names[igroup]); delete [] names[igroup]; names[igroup] = nullptr; dynamic[igroup] = 0; ngroup--; return; } // clear the group if (strcmp(arg[1],"clear") == 0) { int igroup = find(arg[0]); if (igroup == -1) error->all (FLERR,"Could not find group clear group ID"); if (igroup == 0) error->all (FLERR,"Cannot clear group all"); int *mask = atom->mask; int nlocal = atom->nlocal; int bits = inversemask[igroup]; for (i = 0; i < nlocal; i++) mask[i] &= bits; return; } // find group in existing list // add a new group if igroup = -1 int igroup = find(arg[0]); bool created = false; if (igroup == -1) { if (ngroup == MAX_GROUP) error->all(FLERR,"Too many groups"); igroup = find_unused(); names[igroup] = utils::strdup(arg[0]); ngroup++; created = true; } double **x = atom->x; int *mask = atom->mask; int nlocal = atom->nlocal; int bit = bitmask[igroup]; try { // style = region // add to group if atom is in region if (strcmp(arg[1],"region") == 0) { if (narg != 3) error->all(FLERR,"Illegal group command"); int iregion = domain->find_region(arg[2]); if (iregion == -1) error->all(FLERR,"Group region ID does not exist"); domain->regions[iregion]->init(); domain->regions[iregion]->prematch(); for (i = 0; i < nlocal; i++) if (domain->regions[iregion]->match(x[i][0],x[i][1],x[i][2])) mask[i] |= bit; // create an empty group } else if (strcmp(arg[1],"empty") == 0) { if (narg != 2) error->all(FLERR,"Illegal group command"); // nothing else to do here // style = type, molecule, id // add to group if atom matches type/molecule/id or condition } else if (strcmp(arg[1],"type") == 0 || strcmp(arg[1],"molecule") == 0 || strcmp(arg[1],"id") == 0) { if (narg < 3) error->all(FLERR,"Illegal group command"); int category=NONE; if (strcmp(arg[1],"type") == 0) category = TYPE; else if (strcmp(arg[1],"molecule") == 0) category = MOLECULE; else if (strcmp(arg[1],"id") == 0) category = ID; if ((category == MOLECULE) && (!atom->molecule_flag)) error->all(FLERR,"Group command requires atom attribute molecule"); if ((category == ID) && (!atom->tag_enable)) error->all(FLERR,"Group command requires atom IDs"); // args = logical condition if (narg > 3 && (strcmp(arg[2],"<") == 0 || strcmp(arg[2],">") == 0 || strcmp(arg[2],"<=") == 0 || strcmp(arg[2],">=") == 0 || strcmp(arg[2],"==") == 0 || strcmp(arg[2],"!=") == 0 || strcmp(arg[2],"<>") == 0)) { int condition = -1; if (strcmp(arg[2],"<") == 0) condition = LT; else if (strcmp(arg[2],"<=") == 0) condition = LE; else if (strcmp(arg[2],">") == 0) condition = GT; else if (strcmp(arg[2],">=") == 0) condition = GE; else if (strcmp(arg[2],"==") == 0) condition = EQ; else if (strcmp(arg[2],"!=") == 0) condition = NEQ; else if (strcmp(arg[2],"<>") == 0) condition = BETWEEN; else error->all(FLERR,"Illegal group command"); tagint bound1,bound2; bound1 = utils::tnumeric(FLERR,arg[3],false,lmp); bound2 = -1; if (condition == BETWEEN) { if (narg != 5) error->all(FLERR,"Illegal group command"); bound2 = utils::tnumeric(FLERR,arg[4],false,lmp); } else if (narg != 4) error->all(FLERR,"Illegal group command"); int *attribute = nullptr; tagint *tattribute = nullptr; if (category == TYPE) attribute = atom->type; else if (category == MOLECULE) tattribute = atom->molecule; else if (category == ID) tattribute = atom->tag; // add to group if meets condition if (attribute) { if (condition == LT) { for (i = 0; i < nlocal; i++) if (attribute[i] < bound1) mask[i] |= bit; } else if (condition == LE) { for (i = 0; i < nlocal; i++) if (attribute[i] <= bound1) mask[i] |= bit; } else if (condition == GT) { for (i = 0; i < nlocal; i++) if (attribute[i] > bound1) mask[i] |= bit; } else if (condition == GE) { for (i = 0; i < nlocal; i++) if (attribute[i] >= bound1) mask[i] |= bit; } else if (condition == EQ) { for (i = 0; i < nlocal; i++) if (attribute[i] == bound1) mask[i] |= bit; } else if (condition == NEQ) { for (i = 0; i < nlocal; i++) if (attribute[i] != bound1) mask[i] |= bit; } else if (condition == BETWEEN) { for (i = 0; i < nlocal; i++) if (attribute[i] >= bound1 && attribute[i] <= bound2) mask[i] |= bit; } } else { if (condition == LT) { for (i = 0; i < nlocal; i++) if (tattribute[i] < bound1) mask[i] |= bit; } else if (condition == LE) { for (i = 0; i < nlocal; i++) if (tattribute[i] <= bound1) mask[i] |= bit; } else if (condition == GT) { for (i = 0; i < nlocal; i++) if (tattribute[i] > bound1) mask[i] |= bit; } else if (condition == GE) { for (i = 0; i < nlocal; i++) if (tattribute[i] >= bound1) mask[i] |= bit; } else if (condition == EQ) { for (i = 0; i < nlocal; i++) if (tattribute[i] == bound1) mask[i] |= bit; } else if (condition == NEQ) { for (i = 0; i < nlocal; i++) if (tattribute[i] != bound1) mask[i] |= bit; } else if (condition == BETWEEN) { for (i = 0; i < nlocal; i++) if (tattribute[i] >= bound1 && tattribute[i] <= bound2) mask[i] |= bit; } } // args = list of values } else { int *attribute = nullptr; tagint *tattribute = nullptr; if (category == TYPE) attribute = atom->type; else if (category == MOLECULE) tattribute = atom->molecule; else if (category == ID) tattribute = atom->tag; tagint start,stop,delta; for (int iarg = 2; iarg < narg; iarg++) { delta = 1; try { ValueTokenizer values(arg[iarg],":"); start = values.next_tagint(); if (utils::strmatch(arg[iarg],"^-?\\d+$")) { stop = start; } else if (utils::strmatch(arg[iarg],"^-?\\d+:-?\\d+$")) { stop = values.next_tagint(); } else if (utils::strmatch(arg[iarg],"^-?\\d+:-?\\d+:\\d+$")) { stop = values.next_tagint(); delta = values.next_tagint(); } else throw TokenizerException("Syntax error",""); } catch (TokenizerException &e) { error->all(FLERR,"Incorrect range string " "'{}': {}",arg[iarg],e.what()); } if (delta < 1) error->all(FLERR,"Illegal range increment value"); // add to group if attribute matches value or sequence if (attribute) { for (i = 0; i < nlocal; i++) if (attribute[i] >= start && attribute[i] <= stop && (attribute[i]-start) % delta == 0) mask[i] |= bit; } else { for (i = 0; i < nlocal; i++) if (tattribute[i] >= start && tattribute[i] <= stop && (tattribute[i]-start) % delta == 0) mask[i] |= bit; } } } // style = variable // add to group if atom-atyle variable is non-zero } else if (strcmp(arg[1],"variable") == 0) { int ivar = input->variable->find(arg[2]); if (ivar < 0) error->all(FLERR,"Variable name for group does not exist"); if (!input->variable->atomstyle(ivar)) error->all(FLERR,"Variable for group is invalid style"); double *aflag; // aflag = evaluation of per-atom variable memory->create(aflag,nlocal,"group:aflag"); input->variable->compute_atom(ivar,0,aflag,1,0); // add to group if per-atom variable evaluated to non-zero for (i = 0; i < nlocal; i++) if (aflag[i] != 0.0) mask[i] |= bit; memory->destroy(aflag); // style = include } else if (strcmp(arg[1],"include") == 0) { if (narg != 3) error->all(FLERR,"Illegal group command"); if (strcmp(arg[2],"molecule") == 0) { if (!atom->molecule_flag) error->all(FLERR,"Group command requires atom attribute molecule"); add_molecules(igroup,bit); } else error->all(FLERR,"Illegal group command"); // style = subtract } else if (strcmp(arg[1],"subtract") == 0) { if (narg < 4) error->all(FLERR,"Illegal group command"); int length = narg-2; std::vector list(length); int jgroup; for (int iarg = 2; iarg < narg; iarg++) { jgroup = find(arg[iarg]); if (jgroup == -1) error->all(FLERR,"Group ID does not exist"); if (dynamic[jgroup]) error->all(FLERR,"Cannot subtract groups using a dynamic group"); list[iarg-2] = jgroup; } // add to group if in 1st group in list int otherbit = bitmask[list[0]]; for (i = 0; i < nlocal; i++) if (mask[i] & otherbit) mask[i] |= bit; // remove atoms if they are in any of the other groups // AND with inverse mask removes the atom from group int inverse = inversemask[igroup]; for (int ilist = 1; ilist < length; ilist++) { otherbit = bitmask[list[ilist]]; for (i = 0; i < nlocal; i++) if (mask[i] & otherbit) mask[i] &= inverse; } // style = union } else if (strcmp(arg[1],"union") == 0) { if (narg < 3) error->all(FLERR,"Illegal group command"); int length = narg-2; std::vector list(length); int jgroup; for (int iarg = 2; iarg < narg; iarg++) { jgroup = find(arg[iarg]); if (jgroup == -1) error->all(FLERR,"Group ID does not exist"); if (dynamic[jgroup]) error->all(FLERR,"Cannot union groups using a dynamic group"); list[iarg-2] = jgroup; } // add to group if in any other group in list int otherbit; for (int ilist = 0; ilist < length; ilist++) { otherbit = bitmask[list[ilist]]; for (i = 0; i < nlocal; i++) if (mask[i] & otherbit) mask[i] |= bit; } // style = intersect } else if (strcmp(arg[1],"intersect") == 0) { if (narg < 4) error->all(FLERR,"Illegal group command"); int length = narg-2; std::vector list(length); int jgroup; for (int iarg = 2; iarg < narg; iarg++) { jgroup = find(arg[iarg]); if (jgroup == -1) error->all(FLERR,"Group ID does not exist"); if (dynamic[jgroup]) error->all(FLERR,"Cannot intersect groups using a dynamic group"); list[iarg-2] = jgroup; } // add to group if in all groups in list int otherbit,ok,ilist; for (i = 0; i < nlocal; i++) { ok = 1; for (ilist = 0; ilist < length; ilist++) { otherbit = bitmask[list[ilist]]; if ((mask[i] & otherbit) == 0) ok = 0; } if (ok) mask[i] |= bit; } // style = dynamic // create a new FixGroup to dynamically determine atoms in group } else if (strcmp(arg[1],"dynamic") == 0) { if (narg < 4) error->all(FLERR,"Illegal group command"); if (strcmp(arg[0],arg[2]) == 0) error->all(FLERR,"Group dynamic cannot reference itself"); if (find(arg[2]) < 0) error->all(FLERR,"Group dynamic parent group does not exist"); if (igroup == 0) error->all(FLERR,"Group all cannot be made dynamic"); // if group is already dynamic, delete existing FixGroup if (dynamic[igroup]) modify->delete_fix(std::string("GROUP_") + names[igroup]); dynamic[igroup] = 1; std::string fixcmd = "GROUP_"; fixcmd += fmt::format("{} {} GROUP",names[igroup],arg[2]); for (i = 3; i < narg; i++) fixcmd += std::string(" ") + arg[i]; modify->add_fix(fixcmd); // style = static // remove dynamic FixGroup if necessary } else if (strcmp(arg[1],"static") == 0) { if (narg != 2) error->all(FLERR,"Illegal group command"); if (dynamic[igroup]) modify->delete_fix(std::string("GROUP_") + names[igroup]); dynamic[igroup] = 0; // not a valid group style } else error->all(FLERR,"Illegal group command"); } catch (LAMMPSException & e) { // undo created group in case of an error if (created) { delete [] names[igroup]; names[igroup] = nullptr; ngroup--; } throw e; } // print stats for changed group int n; n = 0; for (i = 0; i < nlocal; i++) if (mask[i] & bit) n++; double rlocal = n; double all; MPI_Allreduce(&rlocal,&all,1,MPI_DOUBLE,MPI_SUM,world); if (me == 0) { if (dynamic[igroup]) utils::logmesg(lmp,"dynamic group {} defined\n",names[igroup]); else utils::logmesg(lmp,"{:.15g} atoms in group {}\n",all,names[igroup]); } } /* ---------------------------------------------------------------------- convenience function to allow assigning to groups from a single string ------------------------------------------------------------------------- */ void Group::assign(const std::string &groupcmd) { auto args = utils::split_words(groupcmd); std::vector newarg(args.size()); int i=0; for (const auto &arg : args) { newarg[i++] = (char *)arg.c_str(); } assign(args.size(),newarg.data()); } /* ---------------------------------------------------------------------- add flagged atoms to a new or existing group ------------------------------------------------------------------------- */ void Group::create(const std::string &name, int *flag) { int i; // find group in existing list // add a new group if igroup = -1 int igroup = find(name); if (igroup == -1) { if (ngroup == MAX_GROUP) error->all(FLERR,"Too many groups"); igroup = find_unused(); names[igroup] = utils::strdup(name); ngroup++; } // add atoms to group whose flags are set int *mask = atom->mask; int nlocal = atom->nlocal; int bit = bitmask[igroup]; for (i = 0; i < nlocal; i++) if (flag[i]) mask[i] |= bit; } /* ---------------------------------------------------------------------- return group index if name matches existing group, -1 if no such group ------------------------------------------------------------------------- */ int Group::find(const std::string &name) { for (int igroup = 0; igroup < MAX_GROUP; igroup++) if (names[igroup] && (name == names[igroup])) return igroup; return -1; } /* ---------------------------------------------------------------------- find group with name or create group if it doesn't exist return group index ------------------------------------------------------------------------- */ int Group::find_or_create(const char *name) { int igroup = find(name); if (igroup >= 0) return igroup; if (ngroup == MAX_GROUP) error->all(FLERR,"Too many groups"); igroup = find_unused(); names[igroup] = utils::strdup(name); ngroup++; return igroup; } /* ---------------------------------------------------------------------- return index of first available group should never be called when group limit has been reached ------------------------------------------------------------------------- */ int Group::find_unused() { for (int igroup = 0; igroup < MAX_GROUP; igroup++) if (names[igroup] == nullptr) return igroup; return -1; } /* ---------------------------------------------------------------------- add atoms to group that are in same molecules as atoms already in group do not include molID = 0 ------------------------------------------------------------------------- */ void Group::add_molecules(int /*igroup*/, int bit) { // hash = unique molecule IDs of atoms already in group hash = new std::map(); tagint *molecule = atom->molecule; int *mask = atom->mask; int nlocal = atom->nlocal; for (int i = 0; i < nlocal; i++) if (mask[i] & bit) { if (molecule[i] == 0) continue; if (hash->find(molecule[i]) == hash->end()) (*hash)[molecule[i]] = 1; } // list = set of unique molecule IDs for atoms to add // pass list to all other procs via comm->ring() int n = hash->size(); tagint *list; memory->create(list,n,"group:list"); n = 0; std::map::iterator pos; for (pos = hash->begin(); pos != hash->end(); ++pos) list[n++] = pos->first; molbit = bit; comm->ring(n,sizeof(tagint),list,1,molring,nullptr,(void *)this); delete hash; memory->destroy(list); } /* ---------------------------------------------------------------------- callback from comm->ring() cbuf = list of N molecule IDs, put them in hash loop over my atoms, if matches molecule ID in hash, add atom to group flagged by molbit ------------------------------------------------------------------------- */ void Group::molring(int n, char *cbuf, void *ptr) { Group *gptr = (Group *) ptr; tagint *list = (tagint *) cbuf; std::map *hash = gptr->hash; int nlocal = gptr->atom->nlocal; tagint *molecule = gptr->atom->molecule; int *mask = gptr->atom->mask; int molbit = gptr->molbit; hash->clear(); for (int i = 0; i < n; i++) (*hash)[list[i]] = 1; for (int i = 0; i < nlocal; i++) if (hash->find(molecule[i]) != hash->end()) mask[i] |= molbit; } /* ---------------------------------------------------------------------- write group info to a restart file only called by proc 0 ------------------------------------------------------------------------- */ void Group::write_restart(FILE *fp) { fwrite(&ngroup,sizeof(int),1,fp); // use count to not change restart format with deleted groups // remove this on next major release int n; int count = 0; for (int i = 0; i < MAX_GROUP; i++) { if (names[i]) n = strlen(names[i]) + 1; else n = 0; fwrite(&n,sizeof(int),1,fp); if (n) { fwrite(names[i],sizeof(char),n,fp); count++; } if (count == ngroup) break; } } /* ---------------------------------------------------------------------- read group info from a restart file proc 0 reads, bcast to all procs ------------------------------------------------------------------------- */ void Group::read_restart(FILE *fp) { int i,n; // delete existing group names // atom masks will be overwritten by reading of restart file for (i = 0; i < MAX_GROUP; i++) delete [] names[i]; if (me == 0) utils::sfread(FLERR,&ngroup,sizeof(int),1,fp,nullptr,error); MPI_Bcast(&ngroup,1,MPI_INT,0,world); // use count to not change restart format with deleted groups // remove this on next major release int count = 0; for (i = 0; i < MAX_GROUP; i++) { if (count == ngroup) { names[i] = nullptr; continue; } if (me == 0) utils::sfread(FLERR,&n,sizeof(int),1,fp,nullptr,error); MPI_Bcast(&n,1,MPI_INT,0,world); if (n) { names[i] = new char[n]; if (me == 0) utils::sfread(FLERR,names[i],sizeof(char),n,fp,nullptr,error); MPI_Bcast(names[i],n,MPI_CHAR,0,world); count++; } else names[i] = nullptr; } } // ---------------------------------------------------------------------- // computations on a group of atoms // ---------------------------------------------------------------------- /* ---------------------------------------------------------------------- count atoms in group all ------------------------------------------------------------------------- */ bigint Group::count_all() { bigint nme = atom->nlocal; bigint nall; MPI_Allreduce(&nme,&nall,1,MPI_LMP_BIGINT,MPI_SUM,world); return nall; } /* ---------------------------------------------------------------------- count atoms in group ------------------------------------------------------------------------- */ bigint Group::count(int igroup) { int groupbit = bitmask[igroup]; int *mask = atom->mask; int nlocal = atom->nlocal; int n = 0; for (int i = 0; i < nlocal; i++) if (mask[i] & groupbit) n++; bigint nsingle = n; bigint nall; MPI_Allreduce(&nsingle,&nall,1,MPI_LMP_BIGINT,MPI_SUM,world); return nall; } /* ---------------------------------------------------------------------- count atoms in group and region ------------------------------------------------------------------------- */ bigint Group::count(int igroup, int iregion) { int groupbit = bitmask[igroup]; Region *region = domain->regions[iregion]; region->prematch(); double **x = atom->x; int *mask = atom->mask; int nlocal = atom->nlocal; int n = 0; for (int i = 0; i < nlocal; i++) if (mask[i] & groupbit && region->match(x[i][0],x[i][1],x[i][2])) n++; bigint nsingle = n; bigint nall; MPI_Allreduce(&nsingle,&nall,1,MPI_LMP_BIGINT,MPI_SUM,world); return nall; } /* ---------------------------------------------------------------------- compute the total mass of group of atoms use either per-type mass or per-atom rmass ------------------------------------------------------------------------- */ double Group::mass(int igroup) { int groupbit = bitmask[igroup]; double *mass = atom->mass; double *rmass = atom->rmass; int *mask = atom->mask; int *type = atom->type; int nlocal = atom->nlocal; double one = 0.0; if (rmass) { for (int i = 0; i < nlocal; i++) if (mask[i] & groupbit) one += rmass[i]; } else { for (int i = 0; i < nlocal; i++) if (mask[i] & groupbit) one += mass[type[i]]; } double all; MPI_Allreduce(&one,&all,1,MPI_DOUBLE,MPI_SUM,world); return all; } /* ---------------------------------------------------------------------- compute the total mass of group of atoms in region use either per-type mass or per-atom rmass ------------------------------------------------------------------------- */ double Group::mass(int igroup, int iregion) { int groupbit = bitmask[igroup]; Region *region = domain->regions[iregion]; region->prematch(); double **x = atom->x; double *mass = atom->mass; double *rmass = atom->rmass; int *mask = atom->mask; int *type = atom->type; int nlocal = atom->nlocal; double one = 0.0; if (rmass) { for (int i = 0; i < nlocal; i++) if (mask[i] & groupbit && region->match(x[i][0],x[i][1],x[i][2])) one += rmass[i]; } else { for (int i = 0; i < nlocal; i++) if (mask[i] & groupbit && region->match(x[i][0],x[i][1],x[i][2])) one += mass[type[i]]; } double all; MPI_Allreduce(&one,&all,1,MPI_DOUBLE,MPI_SUM,world); return all; } /* ---------------------------------------------------------------------- compute the total charge of group of atoms ------------------------------------------------------------------------- */ double Group::charge(int igroup) { int groupbit = bitmask[igroup]; double *q = atom->q; int *mask = atom->mask; int nlocal = atom->nlocal; double qone = 0.0; for (int i = 0; i < nlocal; i++) if (mask[i] & groupbit) qone += q[i]; double qall; MPI_Allreduce(&qone,&qall,1,MPI_DOUBLE,MPI_SUM,world); return qall; } /* ---------------------------------------------------------------------- compute the total charge of group of atoms in region ------------------------------------------------------------------------- */ double Group::charge(int igroup, int iregion) { int groupbit = bitmask[igroup]; Region *region = domain->regions[iregion]; region->prematch(); double **x = atom->x; double *q = atom->q; int *mask = atom->mask; int nlocal = atom->nlocal; double qone = 0.0; for (int i = 0; i < nlocal; i++) if (mask[i] & groupbit && region->match(x[i][0],x[i][1],x[i][2])) qone += q[i]; double qall; MPI_Allreduce(&qone,&qall,1,MPI_DOUBLE,MPI_SUM,world); return qall; } /* ---------------------------------------------------------------------- compute the coordinate bounds of the group of atoms periodic images are not considered, so atoms are NOT unwrapped ------------------------------------------------------------------------- */ void Group::bounds(int igroup, double *minmax) { int groupbit = bitmask[igroup]; double extent[6]; extent[0] = extent[2] = extent[4] = BIG; extent[1] = extent[3] = extent[5] = -BIG; double **x = atom->x; int *mask = atom->mask; int nlocal = atom->nlocal; for (int i = 0; i < nlocal; i++) { if (mask[i] & groupbit) { extent[0] = MIN(extent[0],x[i][0]); extent[1] = MAX(extent[1],x[i][0]); extent[2] = MIN(extent[2],x[i][1]); extent[3] = MAX(extent[3],x[i][1]); extent[4] = MIN(extent[4],x[i][2]); extent[5] = MAX(extent[5],x[i][2]); } } // compute extent across all procs // flip sign of MIN to do it in one Allreduce MAX // set box by extent in shrink-wrapped dims extent[0] = -extent[0]; extent[2] = -extent[2]; extent[4] = -extent[4]; MPI_Allreduce(extent,minmax,6,MPI_DOUBLE,MPI_MAX,world); minmax[0] = -minmax[0]; minmax[2] = -minmax[2]; minmax[4] = -minmax[4]; } /* ---------------------------------------------------------------------- compute the coordinate bounds of the group of atoms in region periodic images are not considered, so atoms are NOT unwrapped ------------------------------------------------------------------------- */ void Group::bounds(int igroup, double *minmax, int iregion) { int groupbit = bitmask[igroup]; Region *region = domain->regions[iregion]; region->prematch(); double extent[6]; extent[0] = extent[2] = extent[4] = BIG; extent[1] = extent[3] = extent[5] = -BIG; double **x = atom->x; int *mask = atom->mask; int nlocal = atom->nlocal; for (int i = 0; i < nlocal; i++) { if (mask[i] & groupbit && region->match(x[i][0],x[i][1],x[i][2])) { extent[0] = MIN(extent[0],x[i][0]); extent[1] = MAX(extent[1],x[i][0]); extent[2] = MIN(extent[2],x[i][1]); extent[3] = MAX(extent[3],x[i][1]); extent[4] = MIN(extent[4],x[i][2]); extent[5] = MAX(extent[5],x[i][2]); } } // compute extent across all procs // flip sign of MIN to do it in one Allreduce MAX // set box by extent in shrink-wrapped dims extent[0] = -extent[0]; extent[2] = -extent[2]; extent[4] = -extent[4]; MPI_Allreduce(extent,minmax,6,MPI_DOUBLE,MPI_MAX,world); minmax[0] = -minmax[0]; minmax[2] = -minmax[2]; minmax[4] = -minmax[4]; } /* ---------------------------------------------------------------------- compute the center-of-mass coords of group of atoms masstotal = total mass return center-of-mass coords in cm[] must unwrap atoms to compute center-of-mass correctly ------------------------------------------------------------------------- */ void Group::xcm(int igroup, double masstotal, double *cm) { int groupbit = bitmask[igroup]; double **x = atom->x; int *mask = atom->mask; int *type = atom->type; imageint *image = atom->image; double *mass = atom->mass; double *rmass = atom->rmass; int nlocal = atom->nlocal; double cmone[3]; cmone[0] = cmone[1] = cmone[2] = 0.0; double massone; double unwrap[3]; if (rmass) { for (int i = 0; i < nlocal; i++) if (mask[i] & groupbit) { massone = rmass[i]; domain->unmap(x[i],image[i],unwrap); cmone[0] += unwrap[0] * massone; cmone[1] += unwrap[1] * massone; cmone[2] += unwrap[2] * massone; } } else { for (int i = 0; i < nlocal; i++) if (mask[i] & groupbit) { massone = mass[type[i]]; domain->unmap(x[i],image[i],unwrap); cmone[0] += unwrap[0] * massone; cmone[1] += unwrap[1] * massone; cmone[2] += unwrap[2] * massone; } } MPI_Allreduce(cmone,cm,3,MPI_DOUBLE,MPI_SUM,world); if (masstotal > 0.0) { cm[0] /= masstotal; cm[1] /= masstotal; cm[2] /= masstotal; } } /* ---------------------------------------------------------------------- compute the center-of-mass coords of group of atoms in region mastotal = total mass return center-of-mass coords in cm[] must unwrap atoms to compute center-of-mass correctly ------------------------------------------------------------------------- */ void Group::xcm(int igroup, double masstotal, double *cm, int iregion) { int groupbit = bitmask[igroup]; Region *region = domain->regions[iregion]; region->prematch(); double **x = atom->x; int *mask = atom->mask; int *type = atom->type; imageint *image = atom->image; double *mass = atom->mass; double *rmass = atom->rmass; int nlocal = atom->nlocal; double cmone[3]; cmone[0] = cmone[1] = cmone[2] = 0.0; double massone; double unwrap[3]; if (rmass) { for (int i = 0; i < nlocal; i++) if (mask[i] & groupbit && region->match(x[i][0],x[i][1],x[i][2])) { massone = rmass[i]; domain->unmap(x[i],image[i],unwrap); cmone[0] += unwrap[0] * massone; cmone[1] += unwrap[1] * massone; cmone[2] += unwrap[2] * massone; } } else { for (int i = 0; i < nlocal; i++) if (mask[i] & groupbit && region->match(x[i][0],x[i][1],x[i][2])) { massone = mass[type[i]]; domain->unmap(x[i],image[i],unwrap); cmone[0] += unwrap[0] * massone; cmone[1] += unwrap[1] * massone; cmone[2] += unwrap[2] * massone; } } MPI_Allreduce(cmone,cm,3,MPI_DOUBLE,MPI_SUM,world); if (masstotal > 0.0) { cm[0] /= masstotal; cm[1] /= masstotal; cm[2] /= masstotal; } } /* ---------------------------------------------------------------------- compute the center-of-mass velocity of group of atoms masstotal = total mass return center-of-mass velocity in cm[] ------------------------------------------------------------------------- */ void Group::vcm(int igroup, double masstotal, double *cm) { int groupbit = bitmask[igroup]; double **v = atom->v; int *mask = atom->mask; int *type = atom->type; double *mass = atom->mass; double *rmass = atom->rmass; int nlocal = atom->nlocal; double p[3],massone; p[0] = p[1] = p[2] = 0.0; if (rmass) { for (int i = 0; i < nlocal; i++) if (mask[i] & groupbit) { massone = rmass[i]; p[0] += v[i][0]*massone; p[1] += v[i][1]*massone; p[2] += v[i][2]*massone; } } else { for (int i = 0; i < nlocal; i++) if (mask[i] & groupbit) { massone = mass[type[i]]; p[0] += v[i][0]*massone; p[1] += v[i][1]*massone; p[2] += v[i][2]*massone; } } MPI_Allreduce(p,cm,3,MPI_DOUBLE,MPI_SUM,world); if (masstotal > 0.0) { cm[0] /= masstotal; cm[1] /= masstotal; cm[2] /= masstotal; } } /* ---------------------------------------------------------------------- compute the center-of-mass velocity of group of atoms in region masstotal = total mass return center-of-mass velocity in cm[] ------------------------------------------------------------------------- */ void Group::vcm(int igroup, double masstotal, double *cm, int iregion) { int groupbit = bitmask[igroup]; Region *region = domain->regions[iregion]; region->prematch(); double **x = atom->x; double **v = atom->v; int *mask = atom->mask; int *type = atom->type; double *mass = atom->mass; double *rmass = atom->rmass; int nlocal = atom->nlocal; double p[3],massone; p[0] = p[1] = p[2] = 0.0; if (rmass) { for (int i = 0; i < nlocal; i++) if (mask[i] & groupbit && region->match(x[i][0],x[i][1],x[i][2])) { massone = rmass[i]; p[0] += v[i][0]*massone; p[1] += v[i][1]*massone; p[2] += v[i][2]*massone; } } else { for (int i = 0; i < nlocal; i++) if (mask[i] & groupbit && region->match(x[i][0],x[i][1],x[i][2])) { massone = mass[type[i]]; p[0] += v[i][0]*massone; p[1] += v[i][1]*massone; p[2] += v[i][2]*massone; } } MPI_Allreduce(p,cm,3,MPI_DOUBLE,MPI_SUM,world); if (masstotal > 0.0) { cm[0] /= masstotal; cm[1] /= masstotal; cm[2] /= masstotal; } } /* ---------------------------------------------------------------------- compute the total force on group of atoms ------------------------------------------------------------------------- */ void Group::fcm(int igroup, double *cm) { int groupbit = bitmask[igroup]; double **f = atom->f; int *mask = atom->mask; int nlocal = atom->nlocal; double flocal[3]; flocal[0] = flocal[1] = flocal[2] = 0.0; for (int i = 0; i < nlocal; i++) if (mask[i] & groupbit) { flocal[0] += f[i][0]; flocal[1] += f[i][1]; flocal[2] += f[i][2]; } MPI_Allreduce(flocal,cm,3,MPI_DOUBLE,MPI_SUM,world); } /* ---------------------------------------------------------------------- compute the total force on group of atoms in region ------------------------------------------------------------------------- */ void Group::fcm(int igroup, double *cm, int iregion) { int groupbit = bitmask[igroup]; Region *region = domain->regions[iregion]; region->prematch(); double **x = atom->x; double **f = atom->f; int *mask = atom->mask; int nlocal = atom->nlocal; double flocal[3]; flocal[0] = flocal[1] = flocal[2] = 0.0; for (int i = 0; i < nlocal; i++) if (mask[i] & groupbit && region->match(x[i][0],x[i][1],x[i][2])) { flocal[0] += f[i][0]; flocal[1] += f[i][1]; flocal[2] += f[i][2]; } MPI_Allreduce(flocal,cm,3,MPI_DOUBLE,MPI_SUM,world); } /* ---------------------------------------------------------------------- compute the total kinetic energy of group of atoms and return it ------------------------------------------------------------------------- */ double Group::ke(int igroup) { int groupbit = bitmask[igroup]; double **v = atom->v; int *mask = atom->mask; int *type = atom->type; double *mass = atom->mass; double *rmass = atom->rmass; int nlocal = atom->nlocal; double one = 0.0; if (rmass) { for (int i = 0; i < nlocal; i++) if (mask[i] & groupbit) one += (v[i][0]*v[i][0] + v[i][1]*v[i][1] + v[i][2]*v[i][2]) * rmass[i]; } else { for (int i = 0; i < nlocal; i++) if (mask[i] & groupbit) one += (v[i][0]*v[i][0] + v[i][1]*v[i][1] + v[i][2]*v[i][2]) * mass[type[i]]; } double all; MPI_Allreduce(&one,&all,1,MPI_DOUBLE,MPI_SUM,world); all *= 0.5 * force->mvv2e; return all; } /* ---------------------------------------------------------------------- compute the total kinetic energy of group of atoms in region and return it ------------------------------------------------------------------------- */ double Group::ke(int igroup, int iregion) { int groupbit = bitmask[igroup]; Region *region = domain->regions[iregion]; region->prematch(); double **x = atom->x; double **v = atom->v; int *mask = atom->mask; int *type = atom->type; double *mass = atom->mass; double *rmass = atom->rmass; int nlocal = atom->nlocal; double one = 0.0; if (rmass) { for (int i = 0; i < nlocal; i++) if (mask[i] & groupbit && region->match(x[i][0],x[i][1],x[i][2])) one += (v[i][0]*v[i][0] + v[i][1]*v[i][1] + v[i][2]*v[i][2]) * rmass[i]; } else { for (int i = 0; i < nlocal; i++) if (mask[i] & groupbit && region->match(x[i][0],x[i][1],x[i][2])) one += (v[i][0]*v[i][0] + v[i][1]*v[i][1] + v[i][2]*v[i][2]) * mass[type[i]]; } double all; MPI_Allreduce(&one,&all,1,MPI_DOUBLE,MPI_SUM,world); all *= 0.5 * force->mvv2e; return all; } /* ---------------------------------------------------------------------- compute the radius-of-gyration of group of atoms around center-of-mass cm must unwrap atoms to compute Rg correctly ------------------------------------------------------------------------- */ double Group::gyration(int igroup, double masstotal, double *cm) { int groupbit = bitmask[igroup]; double **x = atom->x; int *mask = atom->mask; int *type = atom->type; imageint *image = atom->image; double *mass = atom->mass; double *rmass = atom->rmass; int nlocal = atom->nlocal; double dx,dy,dz,massone; double unwrap[3]; double rg = 0.0; for (int i = 0; i < nlocal; i++) if (mask[i] & groupbit) { domain->unmap(x[i],image[i],unwrap); dx = unwrap[0] - cm[0]; dy = unwrap[1] - cm[1]; dz = unwrap[2] - cm[2]; if (rmass) massone = rmass[i]; else massone = mass[type[i]]; rg += (dx*dx + dy*dy + dz*dz) * massone; } double rg_all; MPI_Allreduce(&rg,&rg_all,1,MPI_DOUBLE,MPI_SUM,world); if (masstotal > 0.0) return sqrt(rg_all/masstotal); return 0.0; } /* ---------------------------------------------------------------------- compute the radius-of-gyration of group of atoms in region around center-of-mass cm must unwrap atoms to compute Rg correctly ------------------------------------------------------------------------- */ double Group::gyration(int igroup, double masstotal, double *cm, int iregion) { int groupbit = bitmask[igroup]; Region *region = domain->regions[iregion]; region->prematch(); double **x = atom->x; int *mask = atom->mask; int *type = atom->type; imageint *image = atom->image; double *mass = atom->mass; double *rmass = atom->rmass; int nlocal = atom->nlocal; double dx,dy,dz,massone; double unwrap[3]; double rg = 0.0; for (int i = 0; i < nlocal; i++) if (mask[i] & groupbit && region->match(x[i][0],x[i][1],x[i][2])) { domain->unmap(x[i],image[i],unwrap); dx = unwrap[0] - cm[0]; dy = unwrap[1] - cm[1]; dz = unwrap[2] - cm[2]; if (rmass) massone = rmass[i]; else massone = mass[type[i]]; rg += (dx*dx + dy*dy + dz*dz) * massone; } double rg_all; MPI_Allreduce(&rg,&rg_all,1,MPI_DOUBLE,MPI_SUM,world); if (masstotal > 0.0) return sqrt(rg_all/masstotal); return 0.0; } /* ---------------------------------------------------------------------- compute the angular momentum L (lmom) of group around center-of-mass cm must unwrap atoms to compute L correctly ------------------------------------------------------------------------- */ void Group::angmom(int igroup, double *cm, double *lmom) { int groupbit = bitmask[igroup]; double **x = atom->x; double **v = atom->v; int *mask = atom->mask; int *type = atom->type; imageint *image = atom->image; double *mass = atom->mass; double *rmass = atom->rmass; int nlocal = atom->nlocal; double dx,dy,dz,massone; double unwrap[3]; double p[3]; p[0] = p[1] = p[2] = 0.0; for (int i = 0; i < nlocal; i++) if (mask[i] & groupbit) { domain->unmap(x[i],image[i],unwrap); dx = unwrap[0] - cm[0]; dy = unwrap[1] - cm[1]; dz = unwrap[2] - cm[2]; if (rmass) massone = rmass[i]; else massone = mass[type[i]]; p[0] += massone * (dy*v[i][2] - dz*v[i][1]); p[1] += massone * (dz*v[i][0] - dx*v[i][2]); p[2] += massone * (dx*v[i][1] - dy*v[i][0]); } MPI_Allreduce(p,lmom,3,MPI_DOUBLE,MPI_SUM,world); } /* ---------------------------------------------------------------------- compute the angular momentum L (lmom) of group of atoms in region around center-of-mass cm must unwrap atoms to compute L correctly ------------------------------------------------------------------------- */ void Group::angmom(int igroup, double *cm, double *lmom, int iregion) { int groupbit = bitmask[igroup]; Region *region = domain->regions[iregion]; region->prematch(); double **x = atom->x; double **v = atom->v; int *mask = atom->mask; int *type = atom->type; imageint *image = atom->image; double *mass = atom->mass; double *rmass = atom->rmass; int nlocal = atom->nlocal; double dx,dy,dz,massone; double unwrap[3]; double p[3]; p[0] = p[1] = p[2] = 0.0; for (int i = 0; i < nlocal; i++) if (mask[i] & groupbit && region->match(x[i][0],x[i][1],x[i][2])) { domain->unmap(x[i],image[i],unwrap); dx = unwrap[0] - cm[0]; dy = unwrap[1] - cm[1]; dz = unwrap[2] - cm[2]; if (rmass) massone = rmass[i]; else massone = mass[type[i]]; p[0] += massone * (dy*v[i][2] - dz*v[i][1]); p[1] += massone * (dz*v[i][0] - dx*v[i][2]); p[2] += massone * (dx*v[i][1] - dy*v[i][0]); } MPI_Allreduce(p,lmom,3,MPI_DOUBLE,MPI_SUM,world); } /* ---------------------------------------------------------------------- compute the torque T (tq) on group around center-of-mass cm must unwrap atoms to compute T correctly ------------------------------------------------------------------------- */ void Group::torque(int igroup, double *cm, double *tq) { int groupbit = bitmask[igroup]; double **x = atom->x; double **f = atom->f; int *mask = atom->mask; imageint *image = atom->image; int nlocal = atom->nlocal; double dx,dy,dz; double unwrap[3]; double tlocal[3]; tlocal[0] = tlocal[1] = tlocal[2] = 0.0; for (int i = 0; i < nlocal; i++) if (mask[i] & groupbit) { domain->unmap(x[i],image[i],unwrap); dx = unwrap[0] - cm[0]; dy = unwrap[1] - cm[1]; dz = unwrap[2] - cm[2]; tlocal[0] += dy*f[i][2] - dz*f[i][1]; tlocal[1] += dz*f[i][0] - dx*f[i][2]; tlocal[2] += dx*f[i][1] - dy*f[i][0]; } MPI_Allreduce(tlocal,tq,3,MPI_DOUBLE,MPI_SUM,world); } /* ---------------------------------------------------------------------- compute the torque T (tq) on group of atoms in region around center-of-mass cm must unwrap atoms to compute T correctly ------------------------------------------------------------------------- */ void Group::torque(int igroup, double *cm, double *tq, int iregion) { int groupbit = bitmask[igroup]; Region *region = domain->regions[iregion]; region->prematch(); double **x = atom->x; double **f = atom->f; int *mask = atom->mask; imageint *image = atom->image; int nlocal = atom->nlocal; double dx,dy,dz; double unwrap[3]; double tlocal[3]; tlocal[0] = tlocal[1] = tlocal[2] = 0.0; for (int i = 0; i < nlocal; i++) if (mask[i] & groupbit && region->match(x[i][0],x[i][1],x[i][2])) { domain->unmap(x[i],image[i],unwrap); dx = unwrap[0] - cm[0]; dy = unwrap[1] - cm[1]; dz = unwrap[2] - cm[2]; tlocal[0] += dy*f[i][2] - dz*f[i][1]; tlocal[1] += dz*f[i][0] - dx*f[i][2]; tlocal[2] += dx*f[i][1] - dy*f[i][0]; } MPI_Allreduce(tlocal,tq,3,MPI_DOUBLE,MPI_SUM,world); } /* ---------------------------------------------------------------------- compute moment of inertia tensor around center-of-mass cm of group must unwrap atoms to compute itensor correctly ------------------------------------------------------------------------- */ void Group::inertia(int igroup, double *cm, double itensor[3][3]) { int i,j; int groupbit = bitmask[igroup]; double **x = atom->x; int *mask = atom->mask; int *type = atom->type; imageint *image = atom->image; double *mass = atom->mass; double *rmass = atom->rmass; int nlocal = atom->nlocal; double dx,dy,dz,massone; double unwrap[3]; double ione[3][3]; for (i = 0; i < 3; i++) for (j = 0; j < 3; j++) ione[i][j] = 0.0; for (i = 0; i < nlocal; i++) if (mask[i] & groupbit) { domain->unmap(x[i],image[i],unwrap); dx = unwrap[0] - cm[0]; dy = unwrap[1] - cm[1]; dz = unwrap[2] - cm[2]; if (rmass) massone = rmass[i]; else massone = mass[type[i]]; ione[0][0] += massone * (dy*dy + dz*dz); ione[1][1] += massone * (dx*dx + dz*dz); ione[2][2] += massone * (dx*dx + dy*dy); ione[0][1] -= massone * dx*dy; ione[1][2] -= massone * dy*dz; ione[0][2] -= massone * dx*dz; } ione[1][0] = ione[0][1]; ione[2][1] = ione[1][2]; ione[2][0] = ione[0][2]; MPI_Allreduce(&ione[0][0],&itensor[0][0],9,MPI_DOUBLE,MPI_SUM,world); } /* ---------------------------------------------------------------------- compute moment of inertia tensor around cm of group of atoms in region must unwrap atoms to compute itensor correctly ------------------------------------------------------------------------- */ void Group::inertia(int igroup, double *cm, double itensor[3][3], int iregion) { int i,j; int groupbit = bitmask[igroup]; Region *region = domain->regions[iregion]; region->prematch(); double **x = atom->x; int *mask = atom->mask; int *type = atom->type; imageint *image = atom->image; double *mass = atom->mass; double *rmass = atom->rmass; int nlocal = atom->nlocal; double dx,dy,dz,massone; double unwrap[3]; double ione[3][3]; for (i = 0; i < 3; i++) for (j = 0; j < 3; j++) ione[i][j] = 0.0; for (i = 0; i < nlocal; i++) if (mask[i] & groupbit && region->match(x[i][0],x[i][1],x[i][2])) { domain->unmap(x[i],image[i],unwrap); dx = unwrap[0] - cm[0]; dy = unwrap[1] - cm[1]; dz = unwrap[2] - cm[2]; if (rmass) massone = rmass[i]; else massone = mass[type[i]]; ione[0][0] += massone * (dy*dy + dz*dz); ione[1][1] += massone * (dx*dx + dz*dz); ione[2][2] += massone * (dx*dx + dy*dy); ione[0][1] -= massone * dx*dy; ione[1][2] -= massone * dy*dz; ione[0][2] -= massone * dx*dz; } ione[1][0] = ione[0][1]; ione[2][1] = ione[1][2]; ione[2][0] = ione[0][2]; MPI_Allreduce(&ione[0][0],&itensor[0][0],9,MPI_DOUBLE,MPI_SUM,world); } /* ---------------------------------------------------------------------- compute angular velocity omega from L and I ------------------------------------------------------------------------- */ void Group::omega(double *angmom, double inertia[3][3], double *w) { double idiag[3],ex[3],ey[3],ez[3],cross[3]; double evectors[3][3],inverse[3][3]; // determinant = triple product of rows of inertia matrix double determinant = inertia[0][0]*inertia[1][1]*inertia[2][2] + inertia[0][1]*inertia[1][2]*inertia[2][0] + inertia[0][2]*inertia[1][0]*inertia[2][1] - inertia[0][0]*inertia[1][2]*inertia[2][1] - inertia[0][1]*inertia[1][0]*inertia[2][2] - inertia[2][0]*inertia[1][1]*inertia[0][2]; // non-singular I matrix // use L = Iw, inverting I to solve for w // this should give exact zeroing of angular momentum by velocity command if (determinant > EPSILON) { inverse[0][0] = inertia[1][1]*inertia[2][2] - inertia[1][2]*inertia[2][1]; inverse[0][1] = -(inertia[0][1]*inertia[2][2] - inertia[0][2]*inertia[2][1]); inverse[0][2] = inertia[0][1]*inertia[1][2] - inertia[0][2]*inertia[1][1]; inverse[1][0] = -(inertia[1][0]*inertia[2][2] - inertia[1][2]*inertia[2][0]); inverse[1][1] = inertia[0][0]*inertia[2][2] - inertia[0][2]*inertia[2][0]; inverse[1][2] = -(inertia[0][0]*inertia[1][2] - inertia[0][2]*inertia[1][0]); inverse[2][0] = inertia[1][0]*inertia[2][1] - inertia[1][1]*inertia[2][0]; inverse[2][1] = -(inertia[0][0]*inertia[2][1] - inertia[0][1]*inertia[2][0]); inverse[2][2] = inertia[0][0]*inertia[1][1] - inertia[0][1]*inertia[1][0]; for (int i = 0; i < 3; i++) for (int j = 0; j < 3; j++) inverse[i][j] /= determinant; w[0] = inverse[0][0]*angmom[0] + inverse[0][1]*angmom[1] + inverse[0][2]*angmom[2]; w[1] = inverse[1][0]*angmom[0] + inverse[1][1]*angmom[1] + inverse[1][2]*angmom[2]; w[2] = inverse[2][0]*angmom[0] + inverse[2][1]*angmom[1] + inverse[2][2]*angmom[2]; // handle (nearly) singular I matrix // typically due to 2-atom group or linear molecule // use jacobi3() and angmom_to_omega() to calculate valid omega // less exact answer than matrix inversion, due to iterative Jacobi method } else { int ierror = MathEigen::jacobi3(inertia, idiag, evectors); if (ierror) error->all(FLERR, "Insufficient Jacobi rotations for group::omega"); ex[0] = evectors[0][0]; ex[1] = evectors[1][0]; ex[2] = evectors[2][0]; ey[0] = evectors[0][1]; ey[1] = evectors[1][1]; ey[2] = evectors[2][1]; ez[0] = evectors[0][2]; ez[1] = evectors[1][2]; ez[2] = evectors[2][2]; // enforce 3 evectors as a right-handed coordinate system // flip 3rd vector if needed MathExtra::cross3(ex,ey,cross); if (MathExtra::dot3(cross,ez) < 0.0) MathExtra::negate3(ez); // if any principal moment < scaled EPSILON, set to 0.0 double max; max = MAX(idiag[0],idiag[1]); max = MAX(max,idiag[2]); if (idiag[0] < EPSILON*max) idiag[0] = 0.0; if (idiag[1] < EPSILON*max) idiag[1] = 0.0; if (idiag[2] < EPSILON*max) idiag[2] = 0.0; // calculate omega using diagonalized inertia matrix MathExtra::angmom_to_omega(angmom,ex,ey,ez,idiag,w); } }