/* ---------------------------------------------------------------------- LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator https://www.lammps.org/, Sandia National Laboratories Steve Plimpton, sjplimp@sandia.gov Copyright (2003) Sandia Corporation. Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains certain rights in this software. This software is distributed under the GNU General Public License. See the README file in the top-level LAMMPS directory. ------------------------------------------------------------------------- */ /* ---------------------------------------------------------------------- Contributing author: Daniele Rapetti (iximiel@gmail.com) ------------------------------------------------------------------------- */ #include "pair_smatb.h" #include "atom.h" #include "comm.h" #include "error.h" #include "force.h" #include "memory.h" #include "neigh_list.h" #include "neighbor.h" #include using namespace LAMMPS_NS; /* ---------------------------------------------------------------------- */ PairSMATB::PairSMATB(LAMMPS *_lmp) : Pair(_lmp), nmax(0), on_eb(nullptr), r0(nullptr), p(nullptr), A(nullptr), q(nullptr), QSI(nullptr), cutOffStart(nullptr), cutOffEnd(nullptr), cutOffEnd2(nullptr), a3(nullptr), a4(nullptr), a5(nullptr), x3(nullptr), x4(nullptr), x5(nullptr) { single_enable = 0; // 1 if single() routine exists restartinfo = 1; // 1 if pair style writes restart info respa_enable = 0; // 1 if inner/middle/outer rRESPA routines one_coeff = 0; // 1 if allows only one coeff * * call manybody_flag = 1; // 1 if a manybody potential no_virial_fdotr_compute = 0; // 1 if does not invoke virial_fdotr_compute() writedata = 1; // 1 if writes coeffs to data file ghostneigh = 0; // 1 if pair style needs neighbors of ghosts // set comm size needed by this Pair comm_forward = 1; comm_reverse = 1; } /* ---------------------------------------------------------------------- */ PairSMATB::~PairSMATB() { if (copymode) { return; } memory->destroy(on_eb); if (allocated) { memory->destroy(setflag); memory->destroy(cutsq); memory->destroy(r0); memory->destroy(p); memory->destroy(A); memory->destroy(q); memory->destroy(QSI); memory->destroy(cutOffStart); memory->destroy(cutOffEnd); memory->destroy(cutOffEnd2); memory->destroy(a3); memory->destroy(a4); memory->destroy(a5); memory->destroy(x5); memory->destroy(x4); memory->destroy(x3); } } /* ---------------------------------------------------------------------- */ void PairSMATB::compute(int eflag, int vflag) { int i, j, ii, jj, jnum, itype, jtype; double xtmp, ytmp, ztmp, del[3], fpair; double dijsq, dij; double espo, aexpp, qsiexpq, eb_i, Fb, Fr; double polyval, polyval2, polyval3, polyval4, polyval5; if (eflag || vflag) { ev_setup(eflag, vflag); eng_vdwl = 0; } else { evflag = vflag_fdotr = eflag_global = eflag_atom = 0; } // grow on_eb array if necessary if (atom->nmax > nmax) { nmax = atom->nmax; memory->grow(on_eb, nmax, "pair_smatb:on_eb"); } double **x = atom->x; double **f = atom->f; int *type = atom->type; int nlocal = atom->nlocal; int nall = nlocal + atom->nghost; int newton_pair = force->newton_pair; // zero out on_eb if (newton_pair) { memset(on_eb, 0, nall * sizeof(on_eb[0])); } else { memset(on_eb, 0, nlocal * sizeof(on_eb[0])); } int inum = list->inum; int *ilist = list->ilist; int *jlist; int *numneigh = list->numneigh; int **firstneigh = list->firstneigh; // FIRST LOOP: CALCULATES the squared bonding energy and accumulate it in on_eb for each atom for (ii = 0; ii < inum; ++ii) { i = ilist[ii]; xtmp = x[i][0]; ytmp = x[i][1]; ztmp = x[i][2]; itype = type[i]; jlist = firstneigh[i]; jnum = numneigh[i]; for (jj = 0; jj < jnum; ++jj) { j = jlist[jj]; j &= NEIGHMASK; jtype = type[j]; del[0] = xtmp - x[j][0]; del[1] = ytmp - x[j][1]; del[2] = ztmp - x[j][2]; dijsq = del[0] * del[0] + del[1] * del[1] + del[2] * del[2]; if (dijsq < cutOffEnd2[itype][jtype]) { dij = sqrt(dijsq); if (dij < cutOffStart[itype][jtype]) { qsiexpq = (QSI[itype][jtype] * QSI[itype][jtype]) * exp(2.0 * q[itype][jtype] * (1.0 - dij / r0[itype][jtype])); } else { polyval = dij - cutOffEnd[itype][jtype]; polyval3 = polyval * polyval * polyval; polyval4 = polyval3 * polyval; polyval5 = polyval4 * polyval; qsiexpq = x5[itype][jtype] * polyval5 + x4[itype][jtype] * polyval4 + x3[itype][jtype] * polyval3; qsiexpq = qsiexpq * qsiexpq; } on_eb[i] += qsiexpq; on_eb[j] += qsiexpq; } } } // communicate the squared bonding energy between the various bins comm->reverse_comm(this); // Support Loop: take the square root of the bonding energy and // accumulate it in the energy accumulator if needed the store the // reciprocal in on_eb in order to not do it in the SECOND LOOP for (ii = 0; ii < inum; ++ii) { i = ilist[ii]; if (i < nlocal) { eb_i = sqrt(on_eb[i]); if (eb_i != 0.0) { on_eb[i] = 1.0 / eb_i; } else { on_eb[i] = 0.0; } //if needed the bonding energy is accumulated: if (eflag_either) { if (eflag_atom) { eatom[i] -= eb_i; } if (eflag_global) { eng_vdwl -= eb_i; } } } } // this communication stores the denominators in the ghosts atoms, // this is needed because of how forces are calculated comm->forward_comm(this); // SECOND LOOP: given on_eb[i] calculates forces and energies for (ii = 0; ii < inum; ++ii) { i = ilist[ii]; xtmp = x[i][0]; ytmp = x[i][1]; ztmp = x[i][2]; itype = type[i]; jlist = firstneigh[i]; jnum = numneigh[i]; for (jj = 0; jj < jnum; jj++) { j = jlist[jj]; j &= NEIGHMASK; jtype = type[j]; del[0] = xtmp - x[j][0]; del[1] = ytmp - x[j][1]; del[2] = ztmp - x[j][2]; dijsq = del[0] * del[0] + del[1] * del[1] + del[2] * del[2]; if (dijsq < cutOffEnd2[itype][jtype]) { dij = sqrt(dijsq); if (dij < cutOffStart[itype][jtype]) { espo = 1.0 - dij / r0[itype][jtype]; aexpp = exp(p[itype][jtype] * espo) * A[itype][jtype]; Fr = (2.0 * aexpp) * (p[itype][jtype] / r0[itype][jtype]); qsiexpq = (QSI[itype][jtype] * QSI[itype][jtype]) * exp(2.0 * q[itype][jtype] * espo); Fb = -qsiexpq * q[itype][jtype] / r0[itype][jtype]; } else { polyval = dij - cutOffEnd[itype][jtype]; polyval2 = polyval * polyval; polyval3 = polyval2 * polyval; polyval4 = polyval3 * polyval; polyval5 = polyval4 * polyval; aexpp = a5[itype][jtype] * polyval5 + a4[itype][jtype] * polyval4 + a3[itype][jtype] * polyval3; Fr = -2.0 * (5.0 * a5[itype][jtype] * polyval4 + 4.0 * a4[itype][jtype] * polyval3 + 3.0 * a3[itype][jtype] * polyval2); qsiexpq = x5[itype][jtype] * polyval5 + x4[itype][jtype] * polyval4 + x3[itype][jtype] * polyval3; Fb = ((5.0 * x5[itype][jtype] * polyval4 + 4.0 * x4[itype][jtype] * polyval3 + 3.0 * x3[itype][jtype] * polyval2)) * qsiexpq; } // if needed the repulsive energy is accumulated: if (eflag_either) { if (eflag_atom) { eatom[i] += aexpp; if (newton_pair || j < nlocal) { eatom[j] += aexpp; } } if (eflag_global) { if (newton_pair || j < nlocal) { eng_vdwl += 2.0 * (aexpp); } else { eng_vdwl += aexpp; } } } // calculates the module of the pair energy between i and j fpair = (Fb * (on_eb[i] + on_eb[j]) + Fr) / dij; f[i][0] += del[0] * fpair; f[i][1] += del[1] * fpair; f[i][2] += del[2] * fpair; if (newton_pair || j < nlocal) { f[j][0] -= del[0] * fpair; f[j][1] -= del[1] * fpair; f[j][2] -= del[2] * fpair; } if (vflag_atom) { ev_tally(i, j, nlocal, newton_pair, 0.0, 0.0, //Energy is tally'd in the other parts of the potential fpair, del[0], del[1], del[2]); } } } } if (vflag_fdotr) virial_fdotr_compute(); } /* ---------------------------------------------------------------------- global settings ------------------------------------------------------------------------- */ void PairSMATB::settings(int narg, char **) { if (narg > 0) error->all(FLERR, "Illegal pair_style command: smatb accepts no options"); } /* ---------------------------------------------------------------------- allocate all arrays ------------------------------------------------------------------------- */ void PairSMATB::allocate() { const int np1 = atom->ntypes + 1; memory->create(setflag, np1, np1, "pair_smatb:setflag"); for (int i = 1; i < np1; i++) for (int j = i; j < np1; j++) setflag[i][j] = 0; memory->create(cutsq, np1, np1, "pair_smatb:cutsq"); memory->create(r0, np1, np1, "pair_smatb:r0"); memory->create(p, np1, np1, "pair_smatb:p"); memory->create(A, np1, np1, "pair_smatb:A"); memory->create(q, np1, np1, "pair_smatb:q"); memory->create(QSI, np1, np1, "pair_smatb:QSI"); memory->create(cutOffStart, np1, np1, "pair_smatb:cutOffStart"); memory->create(cutOffEnd, np1, np1, "pair_smatb:cutOffEnd"); memory->create(cutOffEnd2, np1, np1, "pair_smatb:cutOffEnd2"); memory->create(a3, np1, np1, "pair_smatb:a1"); memory->create(a4, np1, np1, "pair_smatb:a2"); memory->create(a5, np1, np1, "pair_smatb:a5"); memory->create(x3, np1, np1, "pair_smatb:x1"); memory->create(x4, np1, np1, "pair_smatb:x2"); memory->create(x5, np1, np1, "pair_smatb:x3"); allocated = 1; } /* ---------------------------------------------------------------------- set coeffs for one or more type pairs ------------------------------------------------------------------------- */ void PairSMATB::coeff(int narg, char **arg) { if (!allocated) { allocate(); } if (narg != 9) utils::missing_cmd_args(FLERR, "pair_style smatb", error); int ilo, ihi, jlo, jhi; utils::bounds(FLERR, arg[0], 1, atom->ntypes, ilo, ihi, error); utils::bounds(FLERR, arg[1], 1, atom->ntypes, jlo, jhi, error); double myr0 = utils::numeric(FLERR, arg[2], false, lmp); double myp = utils::numeric(FLERR, arg[3], false, lmp); double myq = utils::numeric(FLERR, arg[4], false, lmp); double myA = utils::numeric(FLERR, arg[5], false, lmp); double myQSI = utils::numeric(FLERR, arg[6], false, lmp); double mycutOffStart = utils::numeric(FLERR, arg[7], false, lmp); double mycutOffEnd = utils::numeric(FLERR, arg[8], false, lmp); int count = 0; for (int i = ilo; i <= ihi; i++) { for (int j = MAX(jlo, i); j <= jhi; j++) { r0[i][j] = myr0; p[i][j] = myp; A[i][j] = myA; q[i][j] = myq; QSI[i][j] = myQSI; cutOffStart[i][j] = mycutOffStart; cutOffEnd[i][j] = mycutOffEnd; setflag[i][j] = 1; count++; } } if (count == 0) error->all(FLERR, "Incorrect args for pair coefficients"); } /* ---------------------------------------------------------------------- init for one type pair i,j and corresponding j,i ------------------------------------------------------------------------- */ double PairSMATB::init_one(int i, int j) { if (setflag[i][j] == 0) { ///@todo implement smatb mixing rules cutOffStart[i][j] = MIN(cutOffStart[i][i], cutOffStart[j][j]); cutOffEnd[i][j] = MAX(cutOffEnd[i][i], cutOffEnd[j][j]); error->all(FLERR, "All pair coeffs are not set"); } double es = cutOffEnd[i][j] - cutOffStart[i][j]; double es2 = es * es; double es3 = es2 * es; // variables for poly for p and A double expp = A[i][j] * exp(p[i][j] * (1. - cutOffStart[i][j] / r0[i][j])); double ap = -1. / es3; double bp = p[i][j] / (r0[i][j] * es2); double cp = -(p[i][j] * p[i][j]) / (es * r0[i][j] * r0[i][j]); a5[i][j] = expp * (12. * ap + 6. * bp + cp) / (2. * es2); a4[i][j] = expp * (15. * ap + 7. * bp + cp) / es; a3[i][j] = expp * (20. * ap + 8. * bp + cp) / 2.; // variables for poly for q and qsi double expq = QSI[i][j] * exp(q[i][j] * (1. - cutOffStart[i][j] / r0[i][j])); double aq = -1 / es3; double bq = q[i][j] / (es2 * r0[i][j]); double cq = -(q[i][j] * q[i][j]) / (es * r0[i][j] * r0[i][j]); x5[i][j] = expq * (12. * aq + 6. * bq + cq) / (2. * es2); x4[i][j] = expq * (15. * aq + 7. * bq + cq) / es; x3[i][j] = expq * (20. * aq + 8. * bq + cq) / 2.; cutOffEnd2[i][j] = cutOffEnd[i][j] * cutOffEnd[i][j]; if (i != j) { setflag[j][i] = 1; cutOffEnd2[j][i] = cutOffEnd2[i][j]; r0[j][i] = r0[i][j]; p[j][i] = p[i][j]; q[j][i] = q[i][j]; A[j][i] = A[i][j]; QSI[j][i] = QSI[i][j]; cutOffStart[j][i] = cutOffStart[i][j]; cutOffEnd[j][i] = cutOffEnd[i][j]; a3[j][i] = a3[i][j]; a4[j][i] = a4[i][j]; a5[j][i] = a5[i][j]; x3[j][i] = x3[i][j]; x4[j][i] = x4[i][j]; x5[j][i] = x5[i][j]; } return cutOffEnd[i][j]; } /* ---------------------------------------------------------------------- */ int PairSMATB::pack_forward_comm(int n, int *list, double *buf, int pbc_flag, int *pbc) { int i, j, m; m = 0; for (i = 0; i < n; ++i) { j = list[i]; buf[m++] = on_eb[j]; } return m; } /* ---------------------------------------------------------------------- */ void PairSMATB::unpack_forward_comm(int n, int first, double *buf) { int i, m, last; m = 0; last = first + n; for (i = first; i < last; ++i) { on_eb[i] = buf[m++]; } } /* ---------------------------------------------------------------------- */ int PairSMATB::pack_reverse_comm(int n, int first, double *buf) { int i, m, last; m = 0; last = first + n; for (i = first; i < last; ++i) { buf[m++] = on_eb[i]; } return m; } /* ---------------------------------------------------------------------- */ void PairSMATB::unpack_reverse_comm(int n, int *list, double *buf) { int i, j, m; m = 0; for (i = 0; i < n; i++) { j = list[i]; on_eb[j] += buf[m++]; } } /* ---------------------------------------------------------------------- */ void PairSMATB::write_restart_settings(FILE *fp) { fwrite(&offset_flag, sizeof(int), 1, fp); fwrite(&mix_flag, sizeof(int), 1, fp); fwrite(&tail_flag, sizeof(int), 1, fp); } /* ---------------------------------------------------------------------- */ void PairSMATB::read_restart_settings(FILE *fp) { int me = comm->me; size_t result; if (me == 0) { result = fread(&offset_flag, sizeof(int), 1, fp); result = fread(&mix_flag, sizeof(int), 1, fp); result = fread(&tail_flag, sizeof(int), 1, fp); } MPI_Bcast(&offset_flag, 1, MPI_INT, 0, world); MPI_Bcast(&mix_flag, 1, MPI_INT, 0, world); MPI_Bcast(&tail_flag, 1, MPI_INT, 0, world); } /* ---------------------------------------------------------------------- */ void PairSMATB::write_restart(FILE *fp) { write_restart_settings(fp); int i, j; for (i = 1; i <= atom->ntypes; i++) { for (j = i; j <= atom->ntypes; j++) { fwrite(&setflag[i][j], sizeof(int), 1, fp); if (setflag[i][j]) { fwrite(&r0[i][j], sizeof(double), 1, fp); fwrite(&p[i][j], sizeof(double), 1, fp); fwrite(&q[i][j], sizeof(double), 1, fp); fwrite(&A[i][j], sizeof(double), 1, fp); fwrite(&QSI[i][j], sizeof(double), 1, fp); fwrite(&cutOffStart[i][j], sizeof(double), 1, fp); fwrite(&cutOffEnd[i][j], sizeof(double), 1, fp); } } } } /* ---------------------------------------------------------------------- */ void PairSMATB::read_restart(FILE *fp) { read_restart_settings(fp); allocate(); size_t result; int i, j; int me = comm->me; for (i = 1; i <= atom->ntypes; i++) for (j = i; j <= atom->ntypes; j++) { if (me == 0) { result = fread(&setflag[i][j], sizeof(int), 1, fp); } MPI_Bcast(&setflag[i][j], 1, MPI_INT, 0, world); if (setflag[i][j]) { if (me == 0) { utils::sfread(FLERR, &r0[i][j], sizeof(double), 1, fp, nullptr, error); utils::sfread(FLERR, &p[i][j], sizeof(double), 1, fp, nullptr, error); utils::sfread(FLERR, &q[i][j], sizeof(double), 1, fp, nullptr, error); utils::sfread(FLERR, &A[i][j], sizeof(double), 1, fp, nullptr, error); utils::sfread(FLERR, &QSI[i][j], sizeof(double), 1, fp, nullptr, error); utils::sfread(FLERR, &cutOffStart[i][j], sizeof(double), 1, fp, nullptr, error); utils::sfread(FLERR, &cutOffEnd[i][j], sizeof(double), 1, fp, nullptr, error); } MPI_Bcast(&r0[i][j], 1, MPI_DOUBLE, 0, world); MPI_Bcast(&p[i][j], 1, MPI_DOUBLE, 0, world); MPI_Bcast(&q[i][j], 1, MPI_DOUBLE, 0, world); MPI_Bcast(&A[i][j], 1, MPI_DOUBLE, 0, world); MPI_Bcast(&QSI[i][j], 1, MPI_DOUBLE, 0, world); MPI_Bcast(&cutOffStart[i][j], 1, MPI_DOUBLE, 0, world); MPI_Bcast(&cutOffEnd[i][j], 1, MPI_DOUBLE, 0, world); } } } /* ---------------------------------------------------------------------- */ void PairSMATB::write_data(FILE *fp) { for (int i = 1; i <= atom->ntypes; i++) { fprintf(fp, "%d %g %g %g %g %g %g %g\n", i, r0[i][i], p[i][i], q[i][i], A[i][i], QSI[i][i], cutOffStart[i][i], cutOffEnd[i][i]); } } /* ---------------------------------------------------------------------- */ void PairSMATB::write_data_all(FILE *fp) { for (int i = 1; i <= atom->ntypes; i++) { for (int j = i; j <= atom->ntypes; j++) { fprintf(fp, "%d %d %g %g %g %g %g %g %g\n", i, j, r0[i][j], p[i][j], q[i][j], A[i][j], QSI[i][j], cutOffStart[i][j], cutOffEnd[i][j]); } } }