/* ---------------------------------------------------------------------- LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator https://www.lammps.org/, Sandia National Laboratories LAMMPS development team: developers@lammps.org Copyright (2003) Sandia Corporation. Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains certain rights in this software. This software is distributed under the GNU General Public License. See the README file in the top-level LAMMPS directory. ------------------------------------------------------------------------- */ #include "compute_coord_atom.h" #include "atom.h" #include "comm.h" #include "compute_orientorder_atom.h" #include "error.h" #include "force.h" #include "group.h" #include "memory.h" #include "modify.h" #include "neigh_list.h" #include "neighbor.h" #include "pair.h" #include "update.h" #include #include using namespace LAMMPS_NS; /* ---------------------------------------------------------------------- */ ComputeCoordAtom::ComputeCoordAtom(LAMMPS *lmp, int narg, char **arg) : Compute(lmp, narg, arg), typelo(nullptr), typehi(nullptr), cvec(nullptr), carray(nullptr), group2(nullptr), id_orientorder(nullptr), normv(nullptr) { if (narg < 5) error->all(FLERR, "Illegal compute coord/atom command"); jgroupbit = group->get_bitmask_by_id(FLERR, "all", "compute coord/atom"); cstyle = NONE; if (strcmp(arg[3], "cutoff") == 0) { cstyle = CUTOFF; double cutoff = utils::numeric(FLERR, arg[4], false, lmp); cutsq = cutoff * cutoff; int iarg = 5; if ((narg > 6) && (strcmp(arg[5], "group") == 0)) { delete[] group2; group2 = utils::strdup(arg[6]); iarg += 2; jgroupbit = group->get_bitmask_by_id(FLERR, group2, "compute coord/atom"); } ncol = narg - iarg + 1; int ntypes = atom->ntypes; typelo = new int[ncol]; typehi = new int[ncol]; if (narg == iarg) { ncol = 1; typelo[0] = 1; typehi[0] = ntypes; } else { ncol = 0; while (iarg < narg) { utils::bounds(FLERR, arg[iarg], 1, ntypes, typelo[ncol], typehi[ncol], error); if (typelo[ncol] > typehi[ncol]) error->all(FLERR, "Illegal compute coord/atom command"); ncol++; iarg++; } } } else if (strcmp(arg[3], "orientorder") == 0) { cstyle = ORIENT; if (narg != 6) error->all(FLERR, "Illegal compute coord/atom command"); id_orientorder = utils::strdup(arg[4]); auto iorientorder = modify->get_compute_by_id(id_orientorder); if (!iorientorder) error->all(FLERR, "Could not find compute coord/atom compute ID {}", id_orientorder); if (!utils::strmatch(iorientorder->style, "^orientorder/atom")) error->all(FLERR, "Compute coord/atom compute ID {} is not orientorder/atom", id_orientorder); threshold = utils::numeric(FLERR, arg[5], false, lmp); if (threshold <= -1.0 || threshold >= 1.0) error->all(FLERR, "Compute coord/atom threshold not between -1 and 1"); ncol = 1; typelo = new int[ncol]; typehi = new int[ncol]; typelo[0] = 1; typehi[0] = atom->ntypes; } else error->all(FLERR, "Invalid cstyle in compute coord/atom"); peratom_flag = 1; if (ncol == 1) size_peratom_cols = 0; else size_peratom_cols = ncol; nmax = 0; } /* ---------------------------------------------------------------------- */ ComputeCoordAtom::~ComputeCoordAtom() { if (copymode) return; delete[] group2; delete[] typelo; delete[] typehi; memory->destroy(cvec); memory->destroy(carray); delete[] id_orientorder; } /* ---------------------------------------------------------------------- */ void ComputeCoordAtom::init() { if (cstyle == ORIENT) { c_orientorder = dynamic_cast(modify->get_compute_by_id(id_orientorder)); if (!c_orientorder) error->all(FLERR, "Could not find compute coord/atom compute ID {}", id_orientorder); cutsq = c_orientorder->cutsq; l = c_orientorder->qlcomp; // communicate real and imaginary 2*l+1 components of the normalized vector comm_forward = 2 * (2 * l + 1); if (!(c_orientorder->qlcompflag)) error->all(FLERR, "Compute coord/atom requires components option in compute orientorder/atom"); } if (force->pair == nullptr) error->all(FLERR, "Compute coord/atom requires a pair style be defined"); if (sqrt(cutsq) > force->pair->cutforce) error->all(FLERR, "Compute coord/atom cutoff is longer than pairwise cutoff"); // need an occasional full neighbor list neighbor->add_request(this, NeighConst::REQ_FULL | NeighConst::REQ_OCCASIONAL); } /* ---------------------------------------------------------------------- */ void ComputeCoordAtom::init_list(int /*id*/, NeighList *ptr) { list = ptr; } /* ---------------------------------------------------------------------- */ void ComputeCoordAtom::compute_peratom() { int i, j, m, ii, jj, inum, jnum, jtype, n; double xtmp, ytmp, ztmp, delx, dely, delz, rsq; int *ilist, *jlist, *numneigh, **firstneigh; double *count; invoked_peratom = update->ntimestep; // grow coordination array if necessary if (atom->nmax > nmax) { if (ncol == 1) { memory->destroy(cvec); nmax = atom->nmax; memory->create(cvec, nmax, "coord/atom:cvec"); vector_atom = cvec; } else { memory->destroy(carray); nmax = atom->nmax; memory->create(carray, nmax, ncol, "coord/atom:carray"); array_atom = carray; } } if (cstyle == ORIENT) { if (!(c_orientorder->invoked_flag & Compute::INVOKED_PERATOM)) { c_orientorder->compute_peratom(); c_orientorder->invoked_flag |= Compute::INVOKED_PERATOM; } nqlist = c_orientorder->nqlist; normv = c_orientorder->array_atom; comm->forward_comm(this); } // invoke full neighbor list (will copy or build if necessary) neighbor->build_one(list); inum = list->inum; ilist = list->ilist; numneigh = list->numneigh; firstneigh = list->firstneigh; // compute coordination number(s) for each atom in group // use full neighbor list to count atoms less than cutoff double **x = atom->x; int *type = atom->type; int *mask = atom->mask; if (cstyle == CUTOFF) { if (ncol == 1) { for (ii = 0; ii < inum; ii++) { i = ilist[ii]; if (mask[i] & groupbit) { xtmp = x[i][0]; ytmp = x[i][1]; ztmp = x[i][2]; jlist = firstneigh[i]; jnum = numneigh[i]; n = 0; for (jj = 0; jj < jnum; jj++) { j = jlist[jj]; j &= NEIGHMASK; if (mask[j] & jgroupbit) { jtype = type[j]; delx = xtmp - x[j][0]; dely = ytmp - x[j][1]; delz = ztmp - x[j][2]; rsq = delx * delx + dely * dely + delz * delz; if (rsq < cutsq && jtype >= typelo[0] && jtype <= typehi[0]) n++; } } cvec[i] = n; } else cvec[i] = 0.0; } } else { for (ii = 0; ii < inum; ii++) { i = ilist[ii]; count = carray[i]; for (m = 0; m < ncol; m++) count[m] = 0.0; if (mask[i] & groupbit) { xtmp = x[i][0]; ytmp = x[i][1]; ztmp = x[i][2]; jlist = firstneigh[i]; jnum = numneigh[i]; for (jj = 0; jj < jnum; jj++) { j = jlist[jj]; j &= NEIGHMASK; if (mask[j] & jgroupbit) { jtype = type[j]; delx = xtmp - x[j][0]; dely = ytmp - x[j][1]; delz = ztmp - x[j][2]; rsq = delx * delx + dely * dely + delz * delz; if (rsq < cutsq) { for (m = 0; m < ncol; m++) if (jtype >= typelo[m] && jtype <= typehi[m]) count[m] += 1.0; } } } } } } } else if (cstyle == ORIENT) { for (ii = 0; ii < inum; ii++) { i = ilist[ii]; if (mask[i] & groupbit) { xtmp = x[i][0]; ytmp = x[i][1]; ztmp = x[i][2]; jlist = firstneigh[i]; jnum = numneigh[i]; n = 0; for (jj = 0; jj < jnum; jj++) { j = jlist[jj]; j &= NEIGHMASK; delx = xtmp - x[j][0]; dely = ytmp - x[j][1]; delz = ztmp - x[j][2]; rsq = delx * delx + dely * dely + delz * delz; if (rsq < cutsq) { double dot_product = 0.0; for (m = 0; m < 2 * (2 * l + 1); m++) { dot_product += normv[i][nqlist + m] * normv[j][nqlist + m]; } if (dot_product > threshold) n++; } } cvec[i] = n; } else cvec[i] = 0.0; } } } /* ---------------------------------------------------------------------- */ int ComputeCoordAtom::pack_forward_comm(int n, int *list, double *buf, int /*pbc_flag*/, int * /*pbc*/) { int i, m = 0, j; for (i = 0; i < n; ++i) { for (j = nqlist; j < nqlist + 2 * (2 * l + 1); ++j) { buf[m++] = normv[list[i]][j]; } } return m; } /* ---------------------------------------------------------------------- */ void ComputeCoordAtom::unpack_forward_comm(int n, int first, double *buf) { int i, last, m = 0, j; last = first + n; for (i = first; i < last; ++i) { for (j = nqlist; j < nqlist + 2 * (2 * l + 1); ++j) { normv[i][j] = buf[m++]; } } } /* ---------------------------------------------------------------------- memory usage of local atom-based array ------------------------------------------------------------------------- */ double ComputeCoordAtom::memory_usage() { double bytes = (double) ncol * nmax * sizeof(double); return bytes; }