/* //@HEADER // ************************************************************************ // // Kokkos v. 3.0 // Copyright (2020) National Technology & Engineering // Solutions of Sandia, LLC (NTESS). // // Under the terms of Contract DE-NA0003525 with NTESS, // the U.S. Government retains certain rights in this software. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // 1. Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // // 2. Redistributions in binary form must reproduce the above copyright // notice, this list of conditions and the following disclaimer in the // documentation and/or other materials provided with the distribution. // // 3. Neither the name of the Corporation nor the names of the // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY NTESS "AS IS" AND ANY // EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NTESS OR THE // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // Questions? Contact Christian R. Trott (crtrott@sandia.gov) // // ************************************************************************ //@HEADER */ #include #include class gtest_checker { public: void truth(bool x) const { EXPECT_TRUE(x); } template void equality(T const& a, T const& b) const { EXPECT_EQ(a, b); } }; class kokkos_checker { public: KOKKOS_INLINE_FUNCTION void truth(bool x) const { if (!x) Kokkos::abort("SIMD unit test truth condition failed on device"); } template KOKKOS_INLINE_FUNCTION void equality(T const& a, T const& b) const { if (a != b) Kokkos::abort("SIMD unit test equality condition failed on device"); } }; template inline void host_check_equality( Kokkos::Experimental::simd const& expected_result, Kokkos::Experimental::simd const& computed_result, std::size_t nlanes) { gtest_checker checker; for (std::size_t i = 0; i < nlanes; ++i) { checker.equality(expected_result[i], computed_result[i]); } using mask_type = typename Kokkos::Experimental::simd::mask_type; mask_type mask(false); for (std::size_t i = 0; i < nlanes; ++i) { mask[i] = true; } checker.equality((expected_result == computed_result) && mask, mask); } template KOKKOS_INLINE_FUNCTION void device_check_equality( Kokkos::Experimental::simd const& expected_result, Kokkos::Experimental::simd const& computed_result, std::size_t nlanes) { kokkos_checker checker; for (std::size_t i = 0; i < nlanes; ++i) { checker.equality(expected_result[i], computed_result[i]); } using mask_type = typename Kokkos::Experimental::simd::mask_type; mask_type mask(false); for (std::size_t i = 0; i < nlanes; ++i) { mask[i] = true; } checker.equality((expected_result == computed_result) && mask, mask); } class load_element_aligned { public: template bool host_load(T const* mem, std::size_t n, Kokkos::Experimental::simd& result) const { if (n < result.size()) return false; result.copy_from(mem, Kokkos::Experimental::element_aligned_tag()); return true; } template KOKKOS_INLINE_FUNCTION bool device_load( T const* mem, std::size_t n, Kokkos::Experimental::simd& result) const { if (n < result.size()) return false; result.copy_from(mem, Kokkos::Experimental::element_aligned_tag()); return true; } }; class load_masked { public: template bool host_load(T const* mem, std::size_t n, Kokkos::Experimental::simd& result) const { using mask_type = typename Kokkos::Experimental::simd::mask_type; mask_type mask(false); for (std::size_t i = 0; i < n; ++i) { mask[i] = true; } where(mask, result) .copy_from(mem, Kokkos::Experimental::element_aligned_tag()); where(!mask, result) = 0; return true; } template KOKKOS_INLINE_FUNCTION bool device_load( T const* mem, std::size_t n, Kokkos::Experimental::simd& result) const { using mask_type = typename Kokkos::Experimental::simd::mask_type; mask_type mask(false); for (std::size_t i = 0; i < n; ++i) { mask[i] = true; } where(mask, result) .copy_from(mem, Kokkos::Experimental::element_aligned_tag()); where(!mask, result) = T(0); return true; } }; class load_as_scalars { public: template bool host_load(T const* mem, std::size_t n, Kokkos::Experimental::simd& result) const { for (std::size_t i = 0; i < n; ++i) { result[i] = mem[i]; } for (std::size_t i = n; i < result.size(); ++i) { result[i] = T(0); } return true; } template KOKKOS_INLINE_FUNCTION bool device_load( T const* mem, std::size_t n, Kokkos::Experimental::simd& result) const { for (std::size_t i = 0; i < n; ++i) { result[i] = mem[i]; } for (std::size_t i = n; i < result.size(); ++i) { result[i] = T(0); } return true; } }; template void host_check_binary_op_one_loader(BinaryOp binary_op, std::size_t n, T const* first_args, T const* second_args) { Loader loader; using simd_type = Kokkos::Experimental::simd; std::size_t constexpr width = simd_type::size(); for (std::size_t i = 0; i < n; i += width) { std::size_t const nremaining = n - i; std::size_t const nlanes = Kokkos::min(nremaining, width); simd_type first_arg; bool const loaded_first_arg = loader.host_load(first_args + i, nlanes, first_arg); simd_type second_arg; bool const loaded_second_arg = loader.host_load(second_args + i, nlanes, second_arg); if (!(loaded_first_arg && loaded_second_arg)) continue; simd_type expected_result; for (std::size_t lane = 0; lane < nlanes; ++lane) { expected_result[lane] = binary_op.on_host(first_arg[lane], second_arg[lane]); } simd_type const computed_result = binary_op.on_host(first_arg, second_arg); host_check_equality(expected_result, computed_result, nlanes); } } template KOKKOS_INLINE_FUNCTION void device_check_binary_op_one_loader( BinaryOp binary_op, std::size_t n, T const* first_args, T const* second_args) { Loader loader; using simd_type = Kokkos::Experimental::simd; std::size_t constexpr width = simd_type::size(); for (std::size_t i = 0; i < n; i += width) { std::size_t const nremaining = n - i; std::size_t const nlanes = Kokkos::min(nremaining, width); simd_type first_arg; bool const loaded_first_arg = loader.device_load(first_args + i, nlanes, first_arg); simd_type second_arg; bool const loaded_second_arg = loader.device_load(second_args + i, nlanes, second_arg); if (!(loaded_first_arg && loaded_second_arg)) continue; simd_type expected_result; for (std::size_t lane = 0; lane < nlanes; ++lane) { expected_result[lane] = binary_op.on_device(first_arg[lane], second_arg[lane]); } simd_type const computed_result = binary_op.on_device(first_arg, second_arg); device_check_equality(expected_result, computed_result, nlanes); } } template inline void host_check_binary_op_all_loaders(BinaryOp binary_op, std::size_t n, T const* first_args, T const* second_args) { host_check_binary_op_one_loader( binary_op, n, first_args, second_args); host_check_binary_op_one_loader(binary_op, n, first_args, second_args); host_check_binary_op_one_loader( binary_op, n, first_args, second_args); } template KOKKOS_INLINE_FUNCTION void device_check_binary_op_all_loaders( BinaryOp binary_op, std::size_t n, T const* first_args, T const* second_args) { device_check_binary_op_one_loader( binary_op, n, first_args, second_args); device_check_binary_op_one_loader(binary_op, n, first_args, second_args); device_check_binary_op_one_loader( binary_op, n, first_args, second_args); } class plus { public: template auto on_host(T const& a, T const& b) const { return a + b; } template KOKKOS_INLINE_FUNCTION auto on_device(T const& a, T const& b) const { return a + b; } }; class minus { public: template auto on_host(T const& a, T const& b) const { return a - b; } template KOKKOS_INLINE_FUNCTION auto on_device(T const& a, T const& b) const { return a - b; } }; class multiplies { public: template auto on_host(T const& a, T const& b) const { return a * b; } template KOKKOS_INLINE_FUNCTION auto on_device(T const& a, T const& b) const { return a * b; } }; class divides { public: template auto on_host(T const& a, T const& b) const { return a / b; } template KOKKOS_INLINE_FUNCTION auto on_device(T const& a, T const& b) const { return a / b; } }; template inline void host_check_math_ops() { std::size_t constexpr n = 11; double const first_args[n] = {1, 2, -1, 10, 0, 1, -2, 10, 0, 1, -2}; double const second_args[n] = {1, 2, 1, 1, 1, -3, -2, 1, 13, -3, -2}; host_check_binary_op_all_loaders(plus(), n, first_args, second_args); host_check_binary_op_all_loaders(minus(), n, first_args, second_args); host_check_binary_op_all_loaders(multiplies(), n, first_args, second_args); host_check_binary_op_all_loaders(divides(), n, first_args, second_args); } template KOKKOS_INLINE_FUNCTION void device_check_math_ops() { std::size_t constexpr n = 11; double const first_args[n] = {1, 2, -1, 10, 0, 1, -2, 10, 0, 1, -2}; double const second_args[n] = {1, 2, 1, 1, 1, -3, -2, 1, 13, -3, -2}; device_check_binary_op_all_loaders(plus(), n, first_args, second_args); device_check_binary_op_all_loaders(minus(), n, first_args, second_args); device_check_binary_op_all_loaders(multiplies(), n, first_args, second_args); device_check_binary_op_all_loaders(divides(), n, first_args, second_args); } template inline void host_check_abi() { host_check_math_ops(); } template KOKKOS_INLINE_FUNCTION void device_check_abi() { device_check_math_ops(); } inline void host_check_abis(Kokkos::Experimental::Impl::abi_set<>) {} KOKKOS_INLINE_FUNCTION void device_check_abis( Kokkos::Experimental::Impl::abi_set<>) {} template inline void host_check_abis( Kokkos::Experimental::Impl::abi_set) { host_check_abi(); host_check_abis(Kokkos::Experimental::Impl::abi_set()); } template KOKKOS_INLINE_FUNCTION void device_check_abis( Kokkos::Experimental::Impl::abi_set) { device_check_abi(); device_check_abis(Kokkos::Experimental::Impl::abi_set()); } TEST(simd, host) { host_check_abis(Kokkos::Experimental::Impl::host_abi_set()); } class simd_device_functor { public: KOKKOS_INLINE_FUNCTION void operator()(int) const { device_check_abis(Kokkos::Experimental::Impl::device_abi_set()); } }; TEST(simd, device) { Kokkos::parallel_for(Kokkos::RangePolicy>(0, 1), simd_device_functor()); }