// clang-format off /* ---------------------------------------------------------------------- LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator https://www.lammps.org/, Sandia National Laboratories Steve Plimpton, sjplimp@sandia.gov Copyright (2003) Sandia Corporation. Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains certain rights in this software. This software is distributed under the GNU General Public License. See the README file in the top-level LAMMPS directory. ------------------------------------------------------------------------- */ /* ---------------------------------------------------------------------- Contributing author: Steven Vandenbrande ------------------------------------------------------------------------- */ #include "angle_cross.h" #include #include "atom.h" #include "neighbor.h" #include "domain.h" #include "comm.h" #include "force.h" #include "math_const.h" #include "memory.h" #include "error.h" using namespace LAMMPS_NS; using namespace MathConst; #define SMALL 0.001 /* ---------------------------------------------------------------------- */ AngleCross::AngleCross(LAMMPS *lmp) : Angle(lmp) {} /* ---------------------------------------------------------------------- */ AngleCross::~AngleCross() { if (copymode) return; if (allocated) { memory->destroy(setflag); memory->destroy(kss); memory->destroy(kbs0); memory->destroy(kbs1); memory->destroy(r00); memory->destroy(r01); memory->destroy(theta0); } } /* ---------------------------------------------------------------------- */ void AngleCross::compute(int eflag, int vflag) { int i1,i2,i3,n,type; double delx1,dely1,delz1,delx2,dely2,delz2; double eangle,f1[3],f3[3]; double dtheta; double dr1,dr2,tk1,tk2,aa1,aa2,aa11,aa12,aa21,aa22; double rsq1,rsq2,r1,r2,c,s,b1,b2; double vx11,vx12,vy11,vy12,vz11,vz12,vx21,vx22,vy21,vy22,vz21,vz22; eangle = 0.0; ev_init(eflag,vflag); double **x = atom->x; double **f = atom->f; int **anglelist = neighbor->anglelist; int nanglelist = neighbor->nanglelist; int nlocal = atom->nlocal; int newton_bond = force->newton_bond; for (n = 0; n < nanglelist; n++) { i1 = anglelist[n][0]; i2 = anglelist[n][1]; i3 = anglelist[n][2]; type = anglelist[n][3]; // 1st bond delx1 = x[i1][0] - x[i2][0]; dely1 = x[i1][1] - x[i2][1]; delz1 = x[i1][2] - x[i2][2]; rsq1 = delx1*delx1 + dely1*dely1 + delz1*delz1; r1 = sqrt(rsq1); // 2nd bond delx2 = x[i3][0] - x[i2][0]; dely2 = x[i3][1] - x[i2][1]; delz2 = x[i3][2] - x[i2][2]; rsq2 = delx2*delx2 + dely2*dely2 + delz2*delz2; r2 = sqrt(rsq2); // angle (cos and sin) c = delx1*delx2 + dely1*dely2 + delz1*delz2; c /= r1*r2; if (c > 1.0) c = 1.0; if (c < -1.0) c = -1.0; s = sqrt(1.0 - c*c); if (s < SMALL) s = SMALL; s = 1.0/s; // force & energy for bond-bond term dr1 = r1 - r00[type]; dr2 = r2 - r01[type]; tk1 = kss[type] * dr1; tk2 = kss[type] * dr2; f1[0] = -delx1*tk2/r1; f1[1] = -dely1*tk2/r1; f1[2] = -delz1*tk2/r1; f3[0] = -delx2*tk1/r2; f3[1] = -dely2*tk1/r2; f3[2] = -delz2*tk1/r2; if (eflag) eangle = kss[type]*dr1*dr2; // force & energy for bond-angle term dtheta = acos(c) - theta0[type]; aa1 = s * dr1 * kbs0[type]; aa2 = s * dr2 * kbs1[type]; aa11 = aa1 * c / rsq1; aa12 = -aa1 / (r1 * r2); aa21 = aa2 * c / rsq1; aa22 = -aa2 / (r1 * r2); vx11 = (aa11 * delx1) + (aa12 * delx2); vx12 = (aa21 * delx1) + (aa22 * delx2); vy11 = (aa11 * dely1) + (aa12 * dely2); vy12 = (aa21 * dely1) + (aa22 * dely2); vz11 = (aa11 * delz1) + (aa12 * delz2); vz12 = (aa21 * delz1) + (aa22 * delz2); aa11 = aa1 * c / rsq2; aa21 = aa2 * c / rsq2; vx21 = (aa11 * delx2) + (aa12 * delx1); vx22 = (aa21 * delx2) + (aa22 * delx1); vy21 = (aa11 * dely2) + (aa12 * dely1); vy22 = (aa21 * dely2) + (aa22 * dely1); vz21 = (aa11 * delz2) + (aa12 * delz1); vz22 = (aa21 * delz2) + (aa22 * delz1); b1 = kbs0[type] * dtheta / r1; b2 = kbs1[type] * dtheta / r2; f1[0] -= vx11 + b1*delx1 + vx12; f1[1] -= vy11 + b1*dely1 + vy12; f1[2] -= vz11 + b1*delz1 + vz12; f3[0] -= vx21 + b2*delx2 + vx22; f3[1] -= vy21 + b2*dely2 + vy22; f3[2] -= vz21 + b2*delz2 + vz22; if (eflag) eangle += kbs0[type]*dr1*dtheta + kbs1[type]*dr2*dtheta; // apply force to each of 3 atoms if (newton_bond || i1 < nlocal) { f[i1][0] += f1[0]; f[i1][1] += f1[1]; f[i1][2] += f1[2]; } if (newton_bond || i2 < nlocal) { f[i2][0] -= f1[0] + f3[0]; f[i2][1] -= f1[1] + f3[1]; f[i2][2] -= f1[2] + f3[2]; } if (newton_bond || i3 < nlocal) { f[i3][0] += f3[0]; f[i3][1] += f3[1]; f[i3][2] += f3[2]; } if (evflag) ev_tally(i1,i2,i3,nlocal,newton_bond,eangle,f1,f3, delx1,dely1,delz1,delx2,dely2,delz2); } } /* ---------------------------------------------------------------------- */ void AngleCross::allocate() { allocated = 1; int n = atom->nangletypes; memory->create(kss,n+1,"angle:kss"); memory->create(kbs0,n+1,"angle:kbs0"); memory->create(kbs1,n+1,"angle:kbs1"); memory->create(r00,n+1,"angle:r00"); memory->create(r01,n+1,"angle:r01"); memory->create(theta0,n+1,"angle:theta0"); memory->create(setflag,n+1,"angle:setflag"); for (int i = 1; i <= n; i++) setflag[i] = 0; } /* ---------------------------------------------------------------------- set coeffs ------------------------------------------------------------------------- */ void AngleCross::coeff(int narg, char **arg) { if (narg != 7) error->all(FLERR,"Incorrect args for angle coefficients"); if (!allocated) allocate(); int ilo,ihi; utils::bounds(FLERR,arg[0],1,atom->nangletypes,ilo,ihi,error); int count = 0; double kss_one = utils::numeric(FLERR,arg[1],false,lmp); double kbs0_one = utils::numeric(FLERR,arg[2],false,lmp); double kbs1_one = utils::numeric(FLERR,arg[3],false,lmp); double r0_one = utils::numeric(FLERR,arg[4],false,lmp); double r1_one = utils::numeric(FLERR,arg[5],false,lmp); double theta0_one = utils::numeric(FLERR,arg[6],false,lmp); for (int i = ilo; i <= ihi; i++) { kss[i] = kss_one; kbs0[i] = kbs0_one; kbs1[i] = kbs1_one; r00[i] = r0_one; r01[i] = r1_one; // Convert theta0 from degrees to radians theta0[i] = theta0_one*MY_PI/180.0; setflag[i] = 1; count++; } if (count == 0) error->all(FLERR,"Incorrect args for angle coefficients"); } /* ---------------------------------------------------------------------- */ double AngleCross::equilibrium_angle(int i) { return theta0[i]; } /* ---------------------------------------------------------------------- proc 0 writes out coeffs to restart file ------------------------------------------------------------------------- */ void AngleCross::write_restart(FILE *fp) { fwrite(&kss[1],sizeof(double),atom->nangletypes,fp); fwrite(&kbs0[1],sizeof(double),atom->nangletypes,fp); fwrite(&kbs1[1],sizeof(double),atom->nangletypes,fp); fwrite(&r00[1],sizeof(double),atom->nangletypes,fp); fwrite(&r01[1],sizeof(double),atom->nangletypes,fp); fwrite(&theta0[1],sizeof(double),atom->nangletypes,fp); } /* ---------------------------------------------------------------------- proc 0 reads coeffs from restart file, bcasts them ------------------------------------------------------------------------- */ void AngleCross::read_restart(FILE *fp) { allocate(); if (comm->me == 0) { utils::sfread(FLERR,&kss[1],sizeof(double),atom->nangletypes,fp,nullptr,error); utils::sfread(FLERR,&kbs0[1],sizeof(double),atom->nangletypes,fp,nullptr,error); utils::sfread(FLERR,&kbs1[1],sizeof(double),atom->nangletypes,fp,nullptr,error); utils::sfread(FLERR,&r00[1],sizeof(double),atom->nangletypes,fp,nullptr,error); utils::sfread(FLERR,&r01[1],sizeof(double),atom->nangletypes,fp,nullptr,error); utils::sfread(FLERR,&theta0[1],sizeof(double),atom->nangletypes,fp,nullptr,error); } MPI_Bcast(&kss[1],atom->nangletypes,MPI_DOUBLE,0,world); MPI_Bcast(&kbs0[1],atom->nangletypes,MPI_DOUBLE,0,world); MPI_Bcast(&kbs1[1],atom->nangletypes,MPI_DOUBLE,0,world); MPI_Bcast(&r00[1],atom->nangletypes,MPI_DOUBLE,0,world); MPI_Bcast(&r01[1],atom->nangletypes,MPI_DOUBLE,0,world); MPI_Bcast(&theta0[1],atom->nangletypes,MPI_DOUBLE,0,world); for (int i = 1; i <= atom->nangletypes; i++) setflag[i] = 1; } /* ---------------------------------------------------------------------- proc 0 writes to data file ------------------------------------------------------------------------- */ void AngleCross::write_data(FILE *fp) { for (int i = 1; i <= atom->nangletypes; i++) fprintf(fp,"%d %g %g %g %g %g %g\n", i,kss[i],kbs0[i],kbs1[i],r00[i],r01[i],theta0[i]/MY_PI*180.0); } /* ---------------------------------------------------------------------- */ double AngleCross::single(int type, int i1, int i2, int i3) { double **x = atom->x; double delx1 = x[i1][0] - x[i2][0]; double dely1 = x[i1][1] - x[i2][1]; double delz1 = x[i1][2] - x[i2][2]; domain->minimum_image(delx1,dely1,delz1); double r1 = sqrt(delx1*delx1 + dely1*dely1 + delz1*delz1); double delx2 = x[i3][0] - x[i2][0]; double dely2 = x[i3][1] - x[i2][1]; double delz2 = x[i3][2] - x[i2][2]; domain->minimum_image(delx2,dely2,delz2); double r2 = sqrt(delx2*delx2 + dely2*dely2 + delz2*delz2); double c = delx1*delx2 + dely1*dely2 + delz1*delz2; c /= r1*r2; if (c > 1.0) c = 1.0; if (c < -1.0) c = -1.0; double s = sqrt(1.0 - c*c); if (s < SMALL) s = SMALL; s = 1.0/s; double dtheta = acos(c) - theta0[type]; double dr1 = r1 - r00[type]; double dr2 = r2 - r01[type]; double energy = kss[type]*dr1*dr2+kbs0[type]*dr1*dtheta + kbs1[type]*dr2*dtheta; return energy; }