/* ---------------------------------------------------------------------- LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator https://lammps.sandia.gov/, Sandia National Laboratories Steve Plimpton, sjplimp@sandia.gov Copyright (2003) Sandia Corporation. Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains certain rights in this software. This software is distributed under the GNU General Public License. See the README file in the top-level LAMMPS directory. ------------------------------------------------------------------------- */ /* ---------------------------------------------------------------------- Contributing authors: Chris Lorenz and Mark Stevens (SNL) ------------------------------------------------------------------------- */ #include "bond_quartic.h" #include #include "atom.h" #include "neighbor.h" #include "comm.h" #include "force.h" #include "pair.h" #include "memory.h" #include "error.h" using namespace LAMMPS_NS; /* ---------------------------------------------------------------------- */ BondQuartic::BondQuartic(LAMMPS *lmp) : Bond(lmp) { TWO_1_3 = pow(2.0,(1.0/3.0)); } /* ---------------------------------------------------------------------- */ BondQuartic::~BondQuartic() { if (allocated) { memory->destroy(setflag); memory->destroy(k); memory->destroy(b1); memory->destroy(b2); memory->destroy(rc); memory->destroy(u0); } } /* ---------------------------------------------------------------------- */ void BondQuartic::compute(int eflag, int vflag) { int i1,i2,n,m,type,itype,jtype; double delx,dely,delz,ebond,fbond,evdwl,fpair; double r,rsq,dr,r2,ra,rb,sr2,sr6; ebond = evdwl = sr6 = 0.0; ev_init(eflag,vflag); // insure pair->ev_tally() will use 1-4 virial contribution if (vflag_global == VIRIAL_FDOTR) force->pair->vflag_either = force->pair->vflag_global = 1; double **cutsq = force->pair->cutsq; double **x = atom->x; double **f = atom->f; int **bondlist = neighbor->bondlist; int nbondlist = neighbor->nbondlist; int nlocal = atom->nlocal; int newton_bond = force->newton_bond; for (n = 0; n < nbondlist; n++) { // skip bond if already broken if (bondlist[n][2] <= 0) continue; i1 = bondlist[n][0]; i2 = bondlist[n][1]; type = bondlist[n][2]; delx = x[i1][0] - x[i2][0]; dely = x[i1][1] - x[i2][1]; delz = x[i1][2] - x[i2][2]; rsq = delx*delx + dely*dely + delz*delz; // if bond breaks, set type to 0 // both in temporary bondlist and permanent bond_type // if this proc owns both atoms, // negate bond_type twice if other atom stores it // if other proc owns 2nd atom, other proc will also break bond if (rsq > rc[type]*rc[type]) { bondlist[n][2] = 0; for (m = 0; m < atom->num_bond[i1]; m++) if (atom->bond_atom[i1][m] == atom->tag[i2]) atom->bond_type[i1][m] = 0; if (i2 < atom->nlocal) for (m = 0; m < atom->num_bond[i2]; m++) if (atom->bond_atom[i2][m] == atom->tag[i1]) atom->bond_type[i2][m] = 0; continue; } // quartic bond // 1st portion is from quartic term // 2nd portion is from LJ term cut at 2^(1/6) with eps = sigma = 1.0 r = sqrt(rsq); dr = r - rc[type]; r2 = dr*dr; ra = dr - b1[type]; rb = dr - b2[type]; fbond = -k[type]/r * (r2*(ra+rb) + 2.0*dr*ra*rb); if (rsq < TWO_1_3) { sr2 = 1.0/rsq; sr6 = sr2*sr2*sr2; fbond += 48.0*sr6*(sr6-0.5)/rsq; } if (eflag) { ebond = k[type]*r2*ra*rb + u0[type]; if (rsq < TWO_1_3) ebond += 4.0*sr6*(sr6-1.0) + 1.0; } // apply force to each of 2 atoms if (newton_bond || i1 < nlocal) { f[i1][0] += delx*fbond; f[i1][1] += dely*fbond; f[i1][2] += delz*fbond; } if (newton_bond || i2 < nlocal) { f[i2][0] -= delx*fbond; f[i2][1] -= dely*fbond; f[i2][2] -= delz*fbond; } if (evflag) ev_tally(i1,i2,nlocal,newton_bond,ebond,fbond,delx,dely,delz); // subtract out pairwise contribution from 2 atoms via pair->single() // required since special_bond = 1,1,1 // tally energy/virial in pair, using newton_bond as newton flag itype = atom->type[i1]; jtype = atom->type[i2]; if (rsq < cutsq[itype][jtype]) { evdwl = -force->pair->single(i1,i2,itype,jtype,rsq,1.0,1.0,fpair); fpair = -fpair; if (newton_bond || i1 < nlocal) { f[i1][0] += delx*fpair; f[i1][1] += dely*fpair; f[i1][2] += delz*fpair; } if (newton_bond || i2 < nlocal) { f[i2][0] -= delx*fpair; f[i2][1] -= dely*fpair; f[i2][2] -= delz*fpair; } if (evflag) force->pair->ev_tally(i1,i2,nlocal,newton_bond, evdwl,0.0,fpair,delx,dely,delz); } } } /* ---------------------------------------------------------------------- */ void BondQuartic::allocate() { allocated = 1; int n = atom->nbondtypes; memory->create(k,n+1,"bond:k"); memory->create(b1,n+1,"bond:b1"); memory->create(b2,n+1,"bond:b2"); memory->create(rc,n+1,"bond:rc"); memory->create(u0,n+1,"bond:u0"); memory->create(setflag,n+1,"bond:setflag"); for (int i = 1; i <= n; i++) setflag[i] = 0; } /* ---------------------------------------------------------------------- set coeffs for one or more types ------------------------------------------------------------------------- */ void BondQuartic::coeff(int narg, char **arg) { if (narg != 6) error->all(FLERR,"Incorrect args for bond coefficients"); if (!allocated) allocate(); int ilo,ihi; utils::bounds(FLERR,arg[0],1,atom->nbondtypes,ilo,ihi,error); double k_one = utils::numeric(FLERR,arg[1],false,lmp); double b1_one = utils::numeric(FLERR,arg[2],false,lmp); double b2_one = utils::numeric(FLERR,arg[3],false,lmp); double rc_one = utils::numeric(FLERR,arg[4],false,lmp); double u0_one = utils::numeric(FLERR,arg[5],false,lmp); int count = 0; for (int i = ilo; i <= ihi; i++) { k[i] = k_one; b1[i] = b1_one; b2[i] = b2_one; rc[i] = rc_one; u0[i] = u0_one; setflag[i] = 1; count++; } if (count == 0) error->all(FLERR,"Incorrect args for bond coefficients"); } /* ---------------------------------------------------------------------- check if pair defined and special_bond settings are valid ------------------------------------------------------------------------- */ void BondQuartic::init_style() { if (force->pair == nullptr || force->pair->single_enable == 0) error->all(FLERR,"Pair style does not support bond_style quartic"); if (force->angle || force->dihedral || force->improper) error->all(FLERR, "Bond style quartic cannot be used with 3,4-body interactions"); if (atom->molecular == Atom::TEMPLATE) error->all(FLERR, "Bond style quartic cannot be used with atom style template"); // special bonds must be 1 1 1 if (force->special_lj[1] != 1.0 || force->special_lj[2] != 1.0 || force->special_lj[3] != 1.0) error->all(FLERR,"Bond style quartic requires special_bonds = 1,1,1"); } /* ---------------------------------------------------------------------- return an equilbrium bond length ------------------------------------------------------------------------- */ double BondQuartic::equilibrium_distance(int /*i*/) { return 0.97; } /* ---------------------------------------------------------------------- proc 0 writes out coeffs to restart file ------------------------------------------------------------------------- */ void BondQuartic::write_restart(FILE *fp) { fwrite(&k[1],sizeof(double),atom->nbondtypes,fp); fwrite(&b1[1],sizeof(double),atom->nbondtypes,fp); fwrite(&b2[1],sizeof(double),atom->nbondtypes,fp); fwrite(&rc[1],sizeof(double),atom->nbondtypes,fp); fwrite(&u0[1],sizeof(double),atom->nbondtypes,fp); } /* ---------------------------------------------------------------------- proc 0 reads coeffs from restart file, bcasts them ------------------------------------------------------------------------- */ void BondQuartic::read_restart(FILE *fp) { allocate(); if (comm->me == 0) { utils::sfread(FLERR,&k[1],sizeof(double),atom->nbondtypes,fp,nullptr,error); utils::sfread(FLERR,&b1[1],sizeof(double),atom->nbondtypes,fp,nullptr,error); utils::sfread(FLERR,&b2[1],sizeof(double),atom->nbondtypes,fp,nullptr,error); utils::sfread(FLERR,&rc[1],sizeof(double),atom->nbondtypes,fp,nullptr,error); utils::sfread(FLERR,&u0[1],sizeof(double),atom->nbondtypes,fp,nullptr,error); } MPI_Bcast(&k[1],atom->nbondtypes,MPI_DOUBLE,0,world); MPI_Bcast(&b1[1],atom->nbondtypes,MPI_DOUBLE,0,world); MPI_Bcast(&b2[1],atom->nbondtypes,MPI_DOUBLE,0,world); MPI_Bcast(&rc[1],atom->nbondtypes,MPI_DOUBLE,0,world); MPI_Bcast(&u0[1],atom->nbondtypes,MPI_DOUBLE,0,world); for (int i = 1; i <= atom->nbondtypes; i++) setflag[i] = 1; } /* ---------------------------------------------------------------------- proc 0 writes to data file ------------------------------------------------------------------------- */ void BondQuartic::write_data(FILE *fp) { for (int i = 1; i <= atom->nbondtypes; i++) fprintf(fp,"%d %g %g %g %g %g\n",i,k[i],b1[i],b2[i],rc[i],u0[i]); } /* ---------------------------------------------------------------------- */ double BondQuartic::single(int type, double rsq, int i, int j, double &fforce) { double r,dr,r2,ra,rb,sr2,sr6; if (type <= 0) return 0.0; double eng = 0.0; // subtract out pairwise contribution from 2 atoms via pair->single() // required since special_bond = 1,1,1 int itype = atom->type[i]; int jtype = atom->type[j]; if (rsq < force->pair->cutsq[itype][jtype]) { double tmp; eng = -force->pair->single(i,j,itype,jtype,rsq,1.0,1.0,tmp); } // quartic bond // 1st portion is from quartic term // 2nd portion is from LJ term cut at 2^(1/6) with eps = sigma = 1.0 r = sqrt(rsq); dr = r - rc[type]; r2 = dr*dr; ra = dr - b1[type]; rb = dr - b2[type]; eng += k[type]*r2*ra*rb + u0[type]; fforce = -k[type]/r * (r2*(ra+rb) + 2.0*dr*ra*rb); if (rsq < TWO_1_3) { sr2 = 1.0/rsq; sr6 = sr2*sr2*sr2; eng += 4.0*sr6*(sr6-1.0) + 1.0; fforce += 48.0*sr6*(sr6-0.5)/rsq; } return eng; }