/* ---------------------------------------------------------------------- LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator http://lammps.sandia.gov, Sandia National Laboratories Steve Plimpton, sjplimp@sandia.gov Copyright (2003) Sandia Corporation. Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains certain rights in this software. This software is distributed under the GNU General Public License. See the README file in the top-level LAMMPS directory. ------------------------------------------------------------------------- */ /* ---------------------------------------------------------------------- Contributing author: Trung Dac Nguyen (ORNL) ------------------------------------------------------------------------- */ #include #include #include #include "pair_colloid_gpu.h" #include "atom.h" #include "atom_vec.h" #include "comm.h" #include "force.h" #include "neighbor.h" #include "neigh_list.h" #include "integrate.h" #include "memory.h" #include "error.h" #include "neigh_request.h" #include "universe.h" #include "update.h" #include "domain.h" #include #include "gpu_extra.h" using namespace LAMMPS_NS; // External functions from cuda library for atom decomposition int colloid_gpu_init(const int ntypes, double **cutsq, double **host_lj1, double **host_lj2, double **host_lj3, double **host_lj4, double **offset, double *special_lj, double **host_a12, double **host_a1, double **host_a2, double **host_d1, double **host_d2, double **host_sigma3, double **host_sigma6, int **host_form, const int nlocal, const int nall, const int max_nbors, const int maxspecial, const double cell_size, int &gpu_mode, FILE *screen); void colloid_gpu_clear(); int ** colloid_gpu_compute_n(const int ago, const int inum, const int nall, double **host_x, int *host_type, double *sublo, double *subhi, tagint *tag, int **nspecial, tagint **special, const bool eflag, const bool vflag, const bool eatom, const bool vatom, int &host_start, int **ilist, int **jnum, const double cpu_time, bool &success); void colloid_gpu_compute(const int ago, const int inum, const int nall, double **host_x, int *host_type, int *ilist, int *numj, int **firstneigh, const bool eflag, const bool vflag, const bool eatom, const bool vatom, int &host_start, const double cpu_time, bool &success); double colloid_gpu_bytes(); /* ---------------------------------------------------------------------- */ PairColloidGPU::PairColloidGPU(LAMMPS *lmp) : PairColloid(lmp), gpu_mode(GPU_FORCE) { respa_enable = 0; reinitflag = 0; cpu_time = 0.0; GPU_EXTRA::gpu_ready(lmp->modify, lmp->error); } /* ---------------------------------------------------------------------- free all arrays ------------------------------------------------------------------------- */ PairColloidGPU::~PairColloidGPU() { colloid_gpu_clear(); } /* ---------------------------------------------------------------------- */ void PairColloidGPU::compute(int eflag, int vflag) { if (eflag || vflag) ev_setup(eflag,vflag); else evflag = vflag_fdotr = 0; int nall = atom->nlocal + atom->nghost; int inum, host_start; bool success = true; int *ilist, *numneigh, **firstneigh; if (gpu_mode != GPU_FORCE) { inum = atom->nlocal; firstneigh = colloid_gpu_compute_n(neighbor->ago, inum, nall, atom->x, atom->type, domain->sublo, domain->subhi, atom->tag, atom->nspecial, atom->special, eflag, vflag, eflag_atom, vflag_atom, host_start, &ilist, &numneigh, cpu_time, success); } else { inum = list->inum; ilist = list->ilist; numneigh = list->numneigh; firstneigh = list->firstneigh; colloid_gpu_compute(neighbor->ago, inum, nall, atom->x, atom->type, ilist, numneigh, firstneigh, eflag, vflag, eflag_atom, vflag_atom, host_start, cpu_time, success); } if (!success) error->one(FLERR,"Insufficient memory on accelerator"); if (host_startnewton_pair) error->all(FLERR,"Cannot use newton pair with colloid/gpu pair style"); // Repeat cutsq calculation because done after call to init_style double maxcut = -1.0; double cut; for (int i = 1; i <= atom->ntypes; i++) { for (int j = i; j <= atom->ntypes; j++) { if (setflag[i][j] != 0 || (setflag[i][i] != 0 && setflag[j][j] != 0)) { cut = init_one(i,j); cut *= cut; if (cut > maxcut) maxcut = cut; cutsq[i][j] = cutsq[j][i] = cut; } else cutsq[i][j] = cutsq[j][i] = 0.0; } } double cell_size = sqrt(maxcut) + neighbor->skin; int **_form = NULL; int n=atom->ntypes; memory->create(_form,n+1,n+1,"colloid/gpu:_form"); for (int i = 1; i <= n; i++) { for (int j = 1; j <= n; j++) { if (form[i][j] == SMALL_SMALL) _form[i][j] = 0; else if (form[i][j] == SMALL_LARGE) _form[i][j] = 1; else if (form[i][j] == LARGE_LARGE) _form[i][j] = 2; } } int maxspecial=0; if (atom->molecular) maxspecial=atom->maxspecial; int success = colloid_gpu_init(atom->ntypes+1, cutsq, lj1, lj2, lj3, lj4, offset, force->special_lj, a12, a1, a2, d1, d2, sigma3, sigma6, _form, atom->nlocal, atom->nlocal+atom->nghost, 300, maxspecial, cell_size, gpu_mode, screen); memory->destroy(_form); GPU_EXTRA::check_flag(success,error,world); if (gpu_mode == GPU_FORCE) { int irequest = neighbor->request(this,instance_me); neighbor->requests[irequest]->half = 0; neighbor->requests[irequest]->full = 1; } } /* ---------------------------------------------------------------------- */ double PairColloidGPU::memory_usage() { double bytes = Pair::memory_usage(); return bytes + colloid_gpu_bytes(); } /* ---------------------------------------------------------------------- */ void PairColloidGPU::cpu_compute(int start, int inum, int eflag, int vflag, int *ilist, int *numneigh, int **firstneigh) { int i,j,ii,jj,jnum,itype,jtype; double xtmp,ytmp,ztmp,delx,dely,delz,evdwl,fpair; double r,rsq,r2inv,r6inv,forcelj,factor_lj; double c1,c2,fR,dUR,dUA; double K[9],h[4],g[4]; int *jlist; double **x = atom->x; double **f = atom->f; int *type = atom->type; double *special_lj = force->special_lj; // loop over neighbors of my atoms for (ii = start; ii < inum; ii++) { i = ilist[ii]; xtmp = x[i][0]; ytmp = x[i][1]; ztmp = x[i][2]; itype = type[i]; jlist = firstneigh[i]; jnum = numneigh[i]; for (jj = 0; jj < jnum; jj++) { j = jlist[jj]; factor_lj = special_lj[sbmask(j)]; j &= NEIGHMASK; delx = xtmp - x[j][0]; dely = ytmp - x[j][1]; delz = ztmp - x[j][2]; rsq = delx*delx + dely*dely + delz*delz; jtype = type[j]; if (rsq >= cutsq[itype][jtype]) continue; switch (form[itype][jtype]) { case SMALL_SMALL: r2inv = 1.0/rsq; r6inv = r2inv*r2inv*r2inv; forcelj = r6inv * (lj1[itype][jtype]*r6inv - lj2[itype][jtype]); fpair = factor_lj*forcelj*r2inv; if (eflag) evdwl = r6inv*(r6inv*lj3[itype][jtype]-lj4[itype][jtype]) - offset[itype][jtype]; break; case SMALL_LARGE: c2 = a2[itype][jtype]; K[1] = c2*c2; K[2] = rsq; K[0] = K[1] - rsq; K[4] = rsq*rsq; K[3] = K[1] - K[2]; K[3] *= K[3]*K[3]; K[6] = K[3]*K[3]; fR = sigma3[itype][jtype]*a12[itype][jtype]*c2*K[1]/K[3]; fpair = 4.0/15.0*fR*factor_lj * (2.0*(K[1]+K[2]) * (K[1]*(5.0*K[1]+22.0*K[2])+5.0*K[4]) * sigma6[itype][jtype]/K[6]-5.0) / K[0]; if (eflag) evdwl = 2.0/9.0*fR * (1.0-(K[1]*(K[1]*(K[1]/3.0+3.0*K[2])+4.2*K[4])+K[2]*K[4]) * sigma6[itype][jtype]/K[6]) - offset[itype][jtype]; if (rsq <= K[1]) error->one(FLERR,"Overlapping small/large in pair colloid"); break; case LARGE_LARGE: r = sqrt(rsq); c1 = a1[itype][jtype]; c2 = a2[itype][jtype]; K[0] = c1*c2; K[1] = c1+c2; K[2] = c1-c2; K[3] = K[1]+r; K[4] = K[1]-r; K[5] = K[2]+r; K[6] = K[2]-r; K[7] = 1.0/(K[3]*K[4]); K[8] = 1.0/(K[5]*K[6]); g[0] = pow(K[3],-7.0); g[1] = pow(K[4],-7.0); g[2] = pow(K[5],-7.0); g[3] = pow(K[6],-7.0); h[0] = ((K[3]+5.0*K[1])*K[3]+30.0*K[0])*g[0]; h[1] = ((K[4]+5.0*K[1])*K[4]+30.0*K[0])*g[1]; h[2] = ((K[5]+5.0*K[2])*K[5]-30.0*K[0])*g[2]; h[3] = ((K[6]+5.0*K[2])*K[6]-30.0*K[0])*g[3]; g[0] *= 42.0*K[0]/K[3]+6.0*K[1]+K[3]; g[1] *= 42.0*K[0]/K[4]+6.0*K[1]+K[4]; g[2] *= -42.0*K[0]/K[5]+6.0*K[2]+K[5]; g[3] *= -42.0*K[0]/K[6]+6.0*K[2]+K[6]; fR = a12[itype][jtype]*sigma6[itype][jtype]/r/37800.0; evdwl = fR * (h[0]-h[1]-h[2]+h[3]); dUR = evdwl/r + 5.0*fR*(g[0]+g[1]-g[2]-g[3]); dUA = -a12[itype][jtype]/3.0*r*((2.0*K[0]*K[7]+1.0)*K[7] + (2.0*K[0]*K[8]-1.0)*K[8]); fpair = factor_lj * (dUR+dUA)/r; if (eflag) evdwl += a12[itype][jtype]/6.0 * (2.0*K[0]*(K[7]+K[8])-log(K[8]/K[7])) - offset[itype][jtype]; if (r <= K[1]) error->one(FLERR,"Overlapping large/large in pair colloid"); break; } if (eflag) evdwl *= factor_lj; f[i][0] += delx*fpair; f[i][1] += dely*fpair; f[i][2] += delz*fpair; if (evflag) ev_tally_full(i,evdwl,0.0,fpair,delx,dely,delz); } } }