/*---------------------------------------------------------------------- PuReMD - Purdue ReaxFF Molecular Dynamics Program Copyright (2010) Purdue University Hasan Metin Aktulga, haktulga@cs.purdue.edu Joseph Fogarty, jcfogart@mail.usf.edu Sagar Pandit, pandit@usf.edu Ananth Y Grama, ayg@cs.purdue.edu This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details: . ----------------------------------------------------------------------*/ #include "reaxc_types.h" #if defined(PURE_REAX) #include "init_md.h" #include "allocate.h" #include "box.h" #include "comm_tools.h" #include "forces.h" #include "grid.h" #include "integrate.h" #include "io_tools.h" #include "list.h" #include "lookup.h" #include "neighbors.h" #include "random.h" #include "reset_tools.h" #include "system_props.h" #include "tool_box.h" #include "vector.h" #elif defined(LAMMPS_REAX) #include "reaxc_init_md.h" #include "reaxc_allocate.h" #include "reaxc_forces.h" #include "reaxc_io_tools.h" #include "reaxc_list.h" #include "reaxc_lookup.h" #include "reaxc_reset_tools.h" #include "reaxc_system_props.h" #include "reaxc_tool_box.h" #include "reaxc_vector.h" #endif #if defined(PURE_REAX) /************************ initialize system ************************/ int Reposition_Atoms( reax_system *system, control_params *control, simulation_data *data, mpi_datatypes *mpi_data, char *msg ) { int i; rvec dx; /* reposition atoms */ if( control->reposition_atoms == 0 ) { //fit atoms to periodic box rvec_MakeZero( dx ); } else if( control->reposition_atoms == 1 ) { //put center of mass to center rvec_Scale( dx, 0.5, system->big_box.box_norms ); rvec_ScaledAdd( dx, -1., data->xcm ); } else if( control->reposition_atoms == 2 ) { //put center of mass to origin rvec_Scale( dx, -1., data->xcm ); } else { strcpy( msg, "reposition_atoms: invalid option" ); return FAILURE; } for( i = 0; i < system->n; ++i ) // Inc_on_T3_Gen( system->my_atoms[i].x, dx, &(system->big_box) ); rvec_Add( system->my_atoms[i].x, dx ); return SUCCESS; } void Generate_Initial_Velocities( reax_system *system, real T ) { int i; real m, scale, norm; if( T <= 0.1 ) { for( i = 0; i < system->n; i++ ) rvec_MakeZero( system->my_atoms[i].v ); } else { Randomize(); for( i = 0; i < system->n; i++ ) { rvec_Random( system->my_atoms[i].v ); norm = rvec_Norm_Sqr( system->my_atoms[i].v ); m = system->reax_param.sbp[ system->my_atoms[i].type ].mass; scale = sqrt( m * norm / (3.0 * K_B * T) ); rvec_Scale( system->my_atoms[i].v, 1./scale, system->my_atoms[i].v ); // fprintf( stderr, "v = %f %f %f\n", // system->my_atoms[i].v[0], // system->my_atoms[i].v[1], // system->my_atoms[i].v[2] ); // fprintf( stderr, "scale = %f\n", scale ); // fprintf( stderr, "v = %f %f %f\n", // system->my_atoms[i].v[0], // system->my_atoms[i].v[1], // system->my_atoms[i].v[2] ); } } } int Init_System( reax_system *system, control_params *control, simulation_data *data, storage *workspace, mpi_datatypes *mpi_data, char *msg ) { int i; reax_atom *atom; int nrecv[MAX_NBRS]; Setup_New_Grid( system, control, mpi_data->world ); #if defined(DEBUG_FOCUS) fprintf( stderr, "p%d GRID:\n", system->my_rank ); Print_Grid( &(system->my_grid), stderr ); #endif Bin_My_Atoms( system, &(workspace->realloc) ); Reorder_My_Atoms( system, workspace ); /* estimate N and total capacity */ for( i = 0; i < MAX_NBRS; ++i ) nrecv[i] = 0; system->max_recved = 0; system->N = SendRecv( system, mpi_data, mpi_data->boundary_atom_type, nrecv, Estimate_Boundary_Atoms, Unpack_Estimate_Message, 1 ); system->total_cap = MAX( (int)(system->N * SAFE_ZONE), MIN_CAP ); Bin_Boundary_Atoms( system ); /* estimate numH and Hcap */ system->numH = 0; if( control->hbond_cut > 0 ) for( i = 0; i < system->n; ++i ) { atom = &(system->my_atoms[i]); if( system->reax_param.sbp[ atom->type ].p_hbond == 1 ) atom->Hindex = system->numH++; else atom->Hindex = -1; } system->Hcap = MAX( system->numH * SAFER_ZONE, MIN_CAP ); //Allocate_System( system, system->local_cap, system->total_cap, msg ); #if defined(DEBUG_FOCUS) fprintf( stderr, "p%d: n=%d local_cap=%d\n", system->my_rank, system->n, system->local_cap ); fprintf( stderr, "p%d: N=%d total_cap=%d\n", system->my_rank, system->N, system->total_cap ); fprintf( stderr, "p%d: numH=%d H_cap=%d\n", system->my_rank, system->numH, system->Hcap ); #endif // if( Reposition_Atoms( system, control, data, mpi_data, msg ) == FAILURE ) // return FAILURE; /* initialize velocities so that desired init T can be attained */ if( !control->restart || (control->restart && control->random_vel) ) Generate_Initial_Velocities( system, control->T_init ); return SUCCESS; } /************************ initialize simulation data ************************/ int Init_Simulation_Data( reax_system *system, control_params *control, simulation_data *data, mpi_datatypes *mpi_data, char *msg ) { Reset_Simulation_Data( data, control->virial ); if( !control->restart ) data->step = data->prev_steps = 0; Compute_Total_Mass( system, data, mpi_data->comm_mesh3D ); Compute_Center_of_Mass( system, data, mpi_data, mpi_data->comm_mesh3D ); Compute_Kinetic_Energy( system, data, mpi_data->comm_mesh3D ); switch( control->ensemble ){ case NVE: data->N_f = 3 * system->bigN; Evolve = Velocity_Verlet_NVE; break; case bNVT: data->N_f = 3 * system->bigN + 1; Evolve = Velocity_Verlet_Berendsen_NVT; break; case nhNVT: fprintf( stderr, "WARNING: Nose-Hoover NVT is still under testing.\n" ); //return FAILURE; data->N_f = 3 * system->bigN + 1; Evolve = Velocity_Verlet_Nose_Hoover_NVT_Klein; if( !control->restart || (control->restart && control->random_vel) ) { data->therm.G_xi = control->Tau_T * (2.0 * data->sys_en.e_kin - data->N_f * K_B * control->T ); data->therm.v_xi = data->therm.G_xi * control->dt; data->therm.v_xi_old = 0; data->therm.xi = 0; } break; case sNPT: /* Semi-Isotropic NPT */ data->N_f = 3 * system->bigN + 4; Evolve = Velocity_Verlet_Berendsen_NPT; if( !control->restart ) Reset_Pressures( data ); break; case iNPT: /* Isotropic NPT */ data->N_f = 3 * system->bigN + 2; Evolve = Velocity_Verlet_Berendsen_NPT; if( !control->restart ) Reset_Pressures( data ); break; case NPT: /* Anisotropic NPT */ strcpy( msg, "init_simulation_data: option not yet implemented" ); return FAILURE; data->N_f = 3 * system->bigN + 9; Evolve = Velocity_Verlet_Berendsen_NPT; /*if( !control->restart ) { data->therm.G_xi = control->Tau_T * (2.0 * data->my_en.e_Kin - data->N_f * K_B * control->T ); data->therm.v_xi = data->therm.G_xi * control->dt; data->iso_bar.eps = 0.33333 * log(system->box.volume); data->inv_W = 1.0 / ( data->N_f * K_B * control->T * SQR(control->Tau_P) ); Compute_Pressure( system, control, data, out_control ); }*/ break; default: strcpy( msg, "init_simulation_data: ensemble not recognized" ); return FAILURE; } /* initialize the timer(s) */ MPI_Barrier( mpi_data->world ); // wait for everyone to come here if( system->my_rank == MASTER_NODE ) { data->timing.start = Get_Time( ); #if defined(LOG_PERFORMANCE) Reset_Timing( &data->timing ); #endif } #if defined(DEBUG) fprintf( stderr, "data->N_f: %8.3f\n", data->N_f ); #endif return SUCCESS; } #elif defined(LAMMPS_REAX) int Init_System( reax_system *system, control_params *control, char *msg ) { int i; reax_atom *atom; /* determine the local and total capacity */ system->local_cap = MAX( (int)(system->n * SAFE_ZONE), MIN_CAP ); system->total_cap = MAX( (int)(system->N * SAFE_ZONE), MIN_CAP ); /* estimate numH and Hcap */ system->numH = 0; if( control->hbond_cut > 0 ) for( i = 0; i < system->n; ++i ) { atom = &(system->my_atoms[i]); if( system->reax_param.sbp[ atom->type ].p_hbond == 1 ) atom->Hindex = system->numH++; else atom->Hindex = -1; } system->Hcap = (int)(MAX( system->numH * SAFER_ZONE, MIN_CAP )); #if defined(DEBUG_FOCUS) fprintf( stderr, "p%d: n=%d local_cap=%d\n", system->my_rank, system->n, system->local_cap ); fprintf( stderr, "p%d: N=%d total_cap=%d\n", system->my_rank, system->N, system->total_cap ); fprintf( stderr, "p%d: numH=%d H_cap=%d\n", system->my_rank, system->numH, system->Hcap ); #endif return SUCCESS; } int Init_Simulation_Data( reax_system *system, control_params *control, simulation_data *data, char *msg ) { Reset_Simulation_Data( data, control->virial ); /* initialize the timer(s) */ if( system->my_rank == MASTER_NODE ) { data->timing.start = Get_Time( ); #if defined(LOG_PERFORMANCE) Reset_Timing( &data->timing ); #endif } //if( !control->restart ) data->step = data->prev_steps = 0; return SUCCESS; } #endif /************************ initialize workspace ************************/ /* Initialize Taper params */ void Init_Taper( control_params *control, storage *workspace, MPI_Comm comm ) { real d1, d7; real swa, swa2, swa3; real swb, swb2, swb3; swa = control->nonb_low; swb = control->nonb_cut; if( fabs( swa ) > 0.01 ) fprintf( stderr, "Warning: non-zero lower Taper-radius cutoff\n" ); if( swb < 0 ) { fprintf( stderr, "Negative upper Taper-radius cutoff\n" ); MPI_Abort( comm, INVALID_INPUT ); } else if( swb < 5 ) fprintf( stderr, "Warning: very low Taper-radius cutoff: %f\n", swb ); d1 = swb - swa; d7 = pow( d1, 7.0 ); swa2 = SQR( swa ); swa3 = CUBE( swa ); swb2 = SQR( swb ); swb3 = CUBE( swb ); workspace->Tap[7] = 20.0 / d7; workspace->Tap[6] = -70.0 * (swa + swb) / d7; workspace->Tap[5] = 84.0 * (swa2 + 3.0*swa*swb + swb2) / d7; workspace->Tap[4] = -35.0 * (swa3 + 9.0*swa2*swb + 9.0*swa*swb2 + swb3 ) / d7; workspace->Tap[3] = 140.0 * (swa3*swb + 3.0*swa2*swb2 + swa*swb3 ) / d7; workspace->Tap[2] =-210.0 * (swa3*swb2 + swa2*swb3) / d7; workspace->Tap[1] = 140.0 * swa3 * swb3 / d7; workspace->Tap[0] = (-35.0*swa3*swb2*swb2 + 21.0*swa2*swb3*swb2 + 7.0*swa*swb3*swb3 + swb3*swb3*swb ) / d7; } int Init_Workspace( reax_system *system, control_params *control, storage *workspace, MPI_Comm comm, char *msg ) { int ret; ret = Allocate_Workspace( system, control, workspace, system->local_cap, system->total_cap, comm, msg ); if( ret != SUCCESS ) return ret; memset( &(workspace->realloc), 0, sizeof(reallocate_data) ); Reset_Workspace( system, workspace ); /* Initialize the Taper function */ Init_Taper( control, workspace, comm ); return SUCCESS; } /************** setup communication data structures **************/ int Init_MPI_Datatypes( reax_system *system, storage *workspace, mpi_datatypes *mpi_data, MPI_Comm comm, char *msg ) { #if defined(PURE_REAX) int i, block[11]; MPI_Aint base, disp[11]; MPI_Datatype type[11]; mpi_atom sample; boundary_atom b_sample; restart_atom r_sample; rvec rvec_sample; rvec2 rvec2_sample; #endif /* setup the world */ mpi_data->world = comm; MPI_Comm_size( comm, &(system->wsize) ); #if defined(PURE_REAX) /* init mpi buffers */ mpi_data->in1_buffer = NULL; mpi_data->in2_buffer = NULL; /* mpi_atom - [orig_id, imprt_id, type, num_bonds, num_hbonds, name, x, v, f_old, s, t] */ block[0] = block[1] = block[2] = block[3] = block[4] = 1; block[5] = 8; block[6] = block[7] = block[8] = 3; block[9] = block[10] = 4; MPI_Address( &(sample.orig_id), disp + 0 ); MPI_Address( &(sample.imprt_id), disp + 1 ); MPI_Address( &(sample.type), disp + 2 ); MPI_Address( &(sample.num_bonds), disp + 3 ); MPI_Address( &(sample.num_hbonds), disp + 4 ); MPI_Address( &(sample.name), disp + 5 ); MPI_Address( &(sample.x[0]), disp + 6 ); MPI_Address( &(sample.v[0]), disp + 7 ); MPI_Address( &(sample.f_old[0]), disp + 8 ); MPI_Address( &(sample.s[0]), disp + 9 ); MPI_Address( &(sample.t[0]), disp + 10 ); base = (MPI_Aint)(&(sample)); for( i = 0; i < 11; ++i ) disp[i] -= base; type[0] = type[1] = type[2] = type[3] = type[4] = MPI_INT; type[5] = MPI_CHAR; type[6] = type[7] = type[8] = type[9] = type[10] = MPI_DOUBLE; MPI_Type_struct( 11, block, disp, type, &(mpi_data->mpi_atom_type) ); MPI_Type_commit( &(mpi_data->mpi_atom_type) ); /* boundary_atom - [orig_id, imprt_id, type, num_bonds, num_hbonds, x] */ block[0] = block[1] = block[2] = block[3] = block[4] = 1; block[5] = 3; MPI_Address( &(b_sample.orig_id), disp + 0 ); MPI_Address( &(b_sample.imprt_id), disp + 1 ); MPI_Address( &(b_sample.type), disp + 2 ); MPI_Address( &(b_sample.num_bonds), disp + 3 ); MPI_Address( &(b_sample.num_hbonds), disp + 4 ); MPI_Address( &(b_sample.x[0]), disp + 5 ); base = (MPI_Aint)(&(b_sample)); for( i = 0; i < 6; ++i ) disp[i] -= base; type[0] = type[1] = type[2] = type[3] = type[4] = MPI_INT; type[5] = MPI_DOUBLE; MPI_Type_struct( 6, block, disp, type, &(mpi_data->boundary_atom_type) ); MPI_Type_commit( &(mpi_data->boundary_atom_type) ); /* mpi_rvec */ block[0] = 3; MPI_Address( &(rvec_sample[0]), disp + 0 ); base = disp[0]; for( i = 0; i < 1; ++i ) disp[i] -= base; type[0] = MPI_DOUBLE; MPI_Type_struct( 1, block, disp, type, &(mpi_data->mpi_rvec) ); MPI_Type_commit( &(mpi_data->mpi_rvec) ); /* mpi_rvec2 */ block[0] = 2; MPI_Address( &(rvec2_sample[0]), disp + 0 ); base = disp[0]; for( i = 0; i < 1; ++i ) disp[i] -= base; type[0] = MPI_DOUBLE; MPI_Type_struct( 1, block, disp, type, &(mpi_data->mpi_rvec2) ); MPI_Type_commit( &(mpi_data->mpi_rvec2) ); /* restart_atom - [orig_id, type, name[8], x, v] */ block[0] = block[1] = 1 ; block[2] = 8; block[3] = block[4] = 3; MPI_Address( &(r_sample.orig_id), disp + 0 ); MPI_Address( &(r_sample.type), disp + 1 ); MPI_Address( &(r_sample.name), disp + 2 ); MPI_Address( &(r_sample.x[0]), disp + 3 ); MPI_Address( &(r_sample.v[0]), disp + 4 ); base = (MPI_Aint)(&(r_sample)); for( i = 0; i < 5; ++i ) disp[i] -= base; type[0] = type[1] = MPI_INT; type[2] = MPI_CHAR; type[3] = type[4] = MPI_DOUBLE; MPI_Type_struct( 5, block, disp, type, &(mpi_data->restart_atom_type) ); MPI_Type_commit( &(mpi_data->restart_atom_type) ); #endif return SUCCESS; } /********************** allocate lists *************************/ #if defined(PURE_REAX) int Init_Lists( reax_system *system, control_params *control, simulation_data *data, storage *workspace, reax_list **lists, mpi_datatypes *mpi_data, char *msg ) { int i, num_nbrs; int total_hbonds, total_bonds, bond_cap, num_3body, cap_3body, Htop; int *hb_top, *bond_top; MPI_Comm comm; comm = mpi_data->world; //for( i = 0; i < MAX_NBRS; ++i ) nrecv[i] = system->my_nbrs[i].est_recv; //system->N = SendRecv( system, mpi_data, mpi_data->boundary_atom_type, nrecv, // Sort_Boundary_Atoms, Unpack_Exchange_Message, 1 ); num_nbrs = Estimate_NumNeighbors( system, lists ); if(!Make_List( system->total_cap, num_nbrs, TYP_FAR_NEIGHBOR, *lists+FAR_NBRS, comm )){ fprintf(stderr, "Problem in initializing far nbrs list. Terminating!\n"); MPI_Abort( comm, INSUFFICIENT_MEMORY ); } #if defined(DEBUG_FOCUS) fprintf( stderr, "p%d: allocated far_nbrs: num_far=%d, space=%dMB\n", system->my_rank, num_nbrs, (int)(num_nbrs*sizeof(far_neighbor_data)/(1024*1024)) ); #endif Generate_Neighbor_Lists( system, data, workspace, lists ); bond_top = (int*) calloc( system->total_cap, sizeof(int) ); hb_top = (int*) calloc( system->local_cap, sizeof(int) ); Estimate_Storages( system, control, lists, &Htop, hb_top, bond_top, &num_3body, comm ); Allocate_Matrix( &(workspace->H), system->local_cap, Htop, comm ); workspace->L = NULL; workspace->U = NULL; #if defined(DEBUG_FOCUS) fprintf( stderr, "p%d: allocated H matrix: Htop=%d, space=%dMB\n", system->my_rank, Htop, (int)(Htop * sizeof(sparse_matrix_entry) / (1024*1024)) ); #endif if( control->hbond_cut > 0 ) { /* init H indexes */ total_hbonds = 0; for( i = 0; i < system->n; ++i ) { system->my_atoms[i].num_hbonds = hb_top[i]; total_hbonds += hb_top[i]; } total_hbonds = MAX( total_hbonds*SAFER_ZONE, MIN_CAP*MIN_HBONDS ); if( !Make_List( system->Hcap, total_hbonds, TYP_HBOND, *lists+HBONDS, comm ) ) { fprintf( stderr, "not enough space for hbonds list. terminating!\n" ); MPI_Abort( comm, INSUFFICIENT_MEMORY ); } #if defined(DEBUG_FOCUS) fprintf( stderr, "p%d: allocated hbonds: total_hbonds=%d, space=%dMB\n", system->my_rank, total_hbonds, (int)(total_hbonds*sizeof(hbond_data)/(1024*1024)) ); #endif } /* bonds list */ //Allocate_Bond_List( system->N, bond_top, (*lists)+BONDS ); //num_bonds = bond_top[system->N-1]; total_bonds = 0; for( i = 0; i < system->N; ++i ) { system->my_atoms[i].num_bonds = bond_top[i]; total_bonds += bond_top[i]; } bond_cap = MAX( total_bonds*SAFE_ZONE, MIN_CAP*MIN_BONDS ); if( !Make_List( system->total_cap, bond_cap, TYP_BOND, *lists+BONDS, comm ) ) { fprintf( stderr, "not enough space for bonds list. terminating!\n" ); MPI_Abort( comm, INSUFFICIENT_MEMORY ); } #if defined(DEBUG_FOCUS) fprintf( stderr, "p%d: allocated bonds: total_bonds=%d, space=%dMB\n", system->my_rank, bond_cap, (int)(bond_cap*sizeof(bond_data)/(1024*1024)) ); #endif /* 3bodies list */ cap_3body = MAX( num_3body*SAFE_ZONE, MIN_3BODIES ); if( !Make_List( bond_cap, cap_3body, TYP_THREE_BODY, *lists+THREE_BODIES, comm ) ){ fprintf( stderr, "Problem in initializing angles list. Terminating!\n" ); MPI_Abort( comm, INSUFFICIENT_MEMORY ); } #if defined(DEBUG_FOCUS) fprintf( stderr, "p%d: allocated 3-body list: num_3body=%d, space=%dMB\n", system->my_rank, cap_3body, (int)(cap_3body*sizeof(three_body_interaction_data)/(1024*1024)) ); #endif #if defined(TEST_FORCES) if( !Make_List( system->total_cap, bond_cap*8, TYP_DDELTA, *lists+DDELTAS, comm ) ) { fprintf( stderr, "Problem in initializing dDelta list. Terminating!\n" ); MPI_Abort( comm, INSUFFICIENT_MEMORY ); } fprintf( stderr, "p%d: allocated dDelta list: num_ddelta=%d space=%ldMB\n", system->my_rank, bond_cap*30, bond_cap*8*sizeof(dDelta_data)/(1024*1024) ); if( !Make_List( bond_cap, bond_cap*50, TYP_DBO, *lists+DBOS, comm ) ) { fprintf( stderr, "Problem in initializing dBO list. Terminating!\n" ); MPI_Abort( comm, INSUFFICIENT_MEMORY ); } fprintf( stderr, "p%d: allocated dbond list: num_dbonds=%d space=%ldMB\n", system->my_rank, bond_cap*MAX_BONDS*3, bond_cap*MAX_BONDS*3*sizeof(dbond_data)/(1024*1024) ); #endif free( hb_top ); free( bond_top ); return SUCCESS; } #elif defined(LAMMPS_REAX) int Init_Lists( reax_system *system, control_params *control, simulation_data *data, storage *workspace, reax_list **lists, mpi_datatypes *mpi_data, char *msg ) { int i, num_nbrs; int total_hbonds, total_bonds, bond_cap, num_3body, cap_3body, Htop; int *hb_top, *bond_top; int nrecv[MAX_NBRS]; MPI_Comm comm; comm = mpi_data->world; bond_top = (int*) calloc( system->total_cap, sizeof(int) ); hb_top = (int*) calloc( system->local_cap, sizeof(int) ); Estimate_Storages( system, control, lists, &Htop, hb_top, bond_top, &num_3body, comm ); if( control->hbond_cut > 0 ) { /* init H indexes */ total_hbonds = 0; for( i = 0; i < system->n; ++i ) { system->my_atoms[i].num_hbonds = hb_top[i]; total_hbonds += hb_top[i]; } total_hbonds = (int)(MAX( total_hbonds*SAFER_ZONE, MIN_CAP*MIN_HBONDS )); if( !Make_List( system->Hcap, total_hbonds, TYP_HBOND, *lists+HBONDS, comm ) ) { fprintf( stderr, "not enough space for hbonds list. terminating!\n" ); MPI_Abort( comm, INSUFFICIENT_MEMORY ); } #if defined(DEBUG_FOCUS) fprintf( stderr, "p%d: allocated hbonds: total_hbonds=%d, space=%dMB\n", system->my_rank, total_hbonds, (int)(total_hbonds*sizeof(hbond_data)/(1024*1024)) ); #endif } /* bonds list */ //Allocate_Bond_List( system->N, bond_top, (*lists)+BONDS ); //num_bonds = bond_top[system->N-1]; total_bonds = 0; for( i = 0; i < system->N; ++i ) { system->my_atoms[i].num_bonds = bond_top[i]; total_bonds += bond_top[i]; } bond_cap = (int)(MAX( total_bonds*SAFE_ZONE, MIN_CAP*MIN_BONDS )); if( !Make_List( system->total_cap, bond_cap, TYP_BOND, *lists+BONDS, comm ) ) { fprintf( stderr, "not enough space for bonds list. terminating!\n" ); MPI_Abort( comm, INSUFFICIENT_MEMORY ); } #if defined(DEBUG_FOCUS) fprintf( stderr, "p%d: allocated bonds: total_bonds=%d, space=%dMB\n", system->my_rank, bond_cap, (int)(bond_cap*sizeof(bond_data)/(1024*1024)) ); #endif /* 3bodies list */ cap_3body = (int)(MAX( num_3body*SAFE_ZONE, MIN_3BODIES )); if( !Make_List( bond_cap, cap_3body, TYP_THREE_BODY, *lists+THREE_BODIES, comm ) ){ fprintf( stderr, "Problem in initializing angles list. Terminating!\n" ); MPI_Abort( comm, INSUFFICIENT_MEMORY ); } #if defined(DEBUG_FOCUS) fprintf( stderr, "p%d: allocated 3-body list: num_3body=%d, space=%dMB\n", system->my_rank, cap_3body, (int)(cap_3body*sizeof(three_body_interaction_data)/(1024*1024)) ); #endif #if defined(TEST_FORCES) if( !Make_List( system->total_cap, bond_cap*8, TYP_DDELTA, *lists+DDELTAS, comm ) ) { fprintf( stderr, "Problem in initializing dDelta list. Terminating!\n" ); MPI_Abort( comm, INSUFFICIENT_MEMORY ); } fprintf( stderr, "p%d: allocated dDelta list: num_ddelta=%d space=%ldMB\n", system->my_rank, bond_cap*30, bond_cap*8*sizeof(dDelta_data)/(1024*1024) ); if( !Make_List( bond_cap, bond_cap*50, TYP_DBO, (*lists)+DBOS, comm ) ) { fprintf( stderr, "Problem in initializing dBO list. Terminating!\n" ); MPI_Abort( comm, INSUFFICIENT_MEMORY ); } fprintf( stderr, "p%d: allocated dbond list: num_dbonds=%d space=%ldMB\n", system->my_rank, bond_cap*MAX_BONDS*3, bond_cap*MAX_BONDS*3*sizeof(dbond_data)/(1024*1024) ); #endif free( hb_top ); free( bond_top ); return SUCCESS; } #endif #if defined(PURE_REAX) void Initialize( reax_system *system, control_params *control, simulation_data *data, storage *workspace, reax_list **lists, output_controls *out_control, mpi_datatypes *mpi_data ) { char msg[MAX_STR]; if( Init_MPI_Datatypes( system, workspace, mpi_data, MPI_COMM_WORLD, msg ) == FAILURE ) { fprintf( stderr, "p%d: init_mpi_datatypes: could not create datatypes\n", system->my_rank ); fprintf( stderr, "p%d: mpi_data couldn't be initialized! terminating.\n", system->my_rank ); MPI_Abort( mpi_data->world, CANNOT_INITIALIZE ); } #if defined(DEBUG) fprintf( stderr, "p%d: initialized mpi datatypes\n", system->my_rank ); #endif if( Init_System(system, control, data, workspace, mpi_data, msg) == FAILURE ){ fprintf( stderr, "p%d: %s\n", system->my_rank, msg ); fprintf( stderr, "p%d: system could not be initialized! terminating.\n", system->my_rank ); MPI_Abort( mpi_data->world, CANNOT_INITIALIZE ); } #if defined(DEBUG) fprintf( stderr, "p%d: system initialized\n", system->my_rank ); #endif if( Init_Simulation_Data(system, control, data, mpi_data, msg) == FAILURE ) { fprintf( stderr, "p%d: %s\n", system->my_rank, msg ); fprintf( stderr, "p%d: sim_data couldn't be initialized! terminating.\n", system->my_rank ); MPI_Abort( mpi_data->world, CANNOT_INITIALIZE ); } #if defined(DEBUG) fprintf( stderr, "p%d: initialized simulation data\n", system->my_rank ); #endif if( Init_Workspace( system, control, workspace, mpi_data->world, msg ) == FAILURE ) { fprintf( stderr, "p%d:init_workspace: not enough memory\n", system->my_rank ); fprintf( stderr, "p%d:workspace couldn't be initialized! terminating.\n", system->my_rank ); MPI_Abort( mpi_data->world, CANNOT_INITIALIZE ); } #if defined(DEBUG) fprintf( stderr, "p%d: initialized workspace\n", system->my_rank ); #endif if( Init_Lists( system, control, data, workspace, lists, mpi_data, msg ) == FAILURE ) { fprintf( stderr, "p%d: %s\n", system->my_rank, msg ); fprintf( stderr, "p%d: system could not be initialized! terminating.\n", system->my_rank ); MPI_Abort( mpi_data->world, CANNOT_INITIALIZE ); } #if defined(DEBUG) fprintf( stderr, "p%d: initialized lists\n", system->my_rank ); #endif if(Init_Output_Files(system,control,out_control,mpi_data,msg) == FAILURE) { fprintf( stderr, "p%d: %s\n", system->my_rank, msg ); fprintf( stderr, "p%d: could not open output files! terminating...\n", system->my_rank ); MPI_Abort( mpi_data->world, CANNOT_INITIALIZE ); } #if defined(DEBUG) fprintf( stderr, "p%d: output files opened\n", system->my_rank ); #endif if( control->tabulate ) { if( Init_Lookup_Tables(system,control,workspace,mpi_data,msg) == FAILURE ) { fprintf( stderr, "p%d: %s\n", system->my_rank, msg ); fprintf( stderr, "p%d: couldn't create lookup table! terminating.\n", system->my_rank ); MPI_Abort( mpi_data->world, CANNOT_INITIALIZE ); } #if defined(DEBUG) fprintf( stderr, "p%d: initialized lookup tables\n", system->my_rank ); #endif } Init_Force_Functions( control ); #if defined(DEBUG) fprintf( stderr, "p%d: initialized force functions\n", system->my_rank ); #endif /*#ifdef TEST_FORCES Init_Force_Test_Functions(); fprintf(stderr,"p%d: initialized force test functions\n",system->my_rank); #endif */ } #elif defined(LAMMPS_REAX) void Initialize( reax_system *system, control_params *control, simulation_data *data, storage *workspace, reax_list **lists, output_controls *out_control, mpi_datatypes *mpi_data, MPI_Comm comm ) { char msg[MAX_STR]; if( Init_MPI_Datatypes(system, workspace, mpi_data, comm, msg) == FAILURE ) { fprintf( stderr, "p%d: init_mpi_datatypes: could not create datatypes\n", system->my_rank ); fprintf( stderr, "p%d: mpi_data couldn't be initialized! terminating.\n", system->my_rank ); MPI_Abort( mpi_data->world, CANNOT_INITIALIZE ); } #if defined(DEBUG) fprintf( stderr, "p%d: initialized mpi datatypes\n", system->my_rank ); #endif if( Init_System(system, control, msg) == FAILURE ){ fprintf( stderr, "p%d: %s\n", system->my_rank, msg ); fprintf( stderr, "p%d: system could not be initialized! terminating.\n", system->my_rank ); MPI_Abort( mpi_data->world, CANNOT_INITIALIZE ); } #if defined(DEBUG) fprintf( stderr, "p%d: system initialized\n", system->my_rank ); #endif if( Init_Simulation_Data( system, control, data, msg ) == FAILURE ) { fprintf( stderr, "p%d: %s\n", system->my_rank, msg ); fprintf( stderr, "p%d: sim_data couldn't be initialized! terminating.\n", system->my_rank ); MPI_Abort( mpi_data->world, CANNOT_INITIALIZE ); } #if defined(DEBUG) fprintf( stderr, "p%d: initialized simulation data\n", system->my_rank ); #endif if( Init_Workspace( system, control, workspace, mpi_data->world, msg ) == FAILURE ) { fprintf( stderr, "p%d:init_workspace: not enough memory\n", system->my_rank ); fprintf( stderr, "p%d:workspace couldn't be initialized! terminating.\n", system->my_rank ); MPI_Abort( mpi_data->world, CANNOT_INITIALIZE ); } #if defined(DEBUG) fprintf( stderr, "p%d: initialized workspace\n", system->my_rank ); #endif if( Init_Lists( system, control, data, workspace, lists, mpi_data, msg ) == FAILURE ) { fprintf( stderr, "p%d: %s\n", system->my_rank, msg ); fprintf( stderr, "p%d: system could not be initialized! terminating.\n", system->my_rank ); MPI_Abort( mpi_data->world, CANNOT_INITIALIZE ); } #if defined(DEBUG) fprintf( stderr, "p%d: initialized lists\n", system->my_rank ); #endif if( Init_Output_Files(system,control,out_control,mpi_data,msg)== FAILURE) { fprintf( stderr, "p%d: %s\n", system->my_rank, msg ); fprintf( stderr, "p%d: could not open output files! terminating...\n", system->my_rank ); MPI_Abort( mpi_data->world, CANNOT_INITIALIZE ); } #if defined(DEBUG) fprintf( stderr, "p%d: output files opened\n", system->my_rank ); #endif if( control->tabulate ) { if( Init_Lookup_Tables( system, control, workspace, mpi_data, msg ) == FAILURE ) { fprintf( stderr, "p%d: %s\n", system->my_rank, msg ); fprintf( stderr, "p%d: couldn't create lookup table! terminating.\n", system->my_rank ); MPI_Abort( mpi_data->world, CANNOT_INITIALIZE ); } #if defined(DEBUG) fprintf( stderr, "p%d: initialized lookup tables\n", system->my_rank ); #endif } Init_Force_Functions( control ); #if defined(DEBUG) fprintf( stderr, "p%d: initialized force functions\n", system->my_rank ); #endif /*#if defined(TEST_FORCES) Init_Force_Test_Functions(); fprintf(stderr,"p%d: initialized force test functions\n",system->my_rank); #endif*/ } #endif