// clang-format off /* ---------------------------------------------------------------------- LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator https://www.lammps.org/, Sandia National Laboratories LAMMPS development team: developers@lammps.org Copyright (2003) Sandia Corporation. Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains certain rights in this software. This software is distributed under the GNU General Public License. See the README file in the top-level LAMMPS directory. ------------------------------------------------------------------------- */ #include "pair_tri_lj.h" #include #include "math_extra.h" #include "atom.h" #include "atom_vec_tri.h" #include "force.h" #include "neighbor.h" #include "neigh_list.h" #include "memory.h" #include "error.h" using namespace LAMMPS_NS; static constexpr int DELTA = 20; /* ---------------------------------------------------------------------- */ PairTriLJ::PairTriLJ(LAMMPS *lmp) : Pair(lmp) { dmax = nmax = 0; discrete = nullptr; dnum = dfirst = nullptr; single_enable = 0; restartinfo = 0; } /* ---------------------------------------------------------------------- */ PairTriLJ::~PairTriLJ() { memory->sfree(discrete); memory->destroy(dnum); memory->destroy(dfirst); if (allocated) { memory->destroy(setflag); memory->destroy(cutsq); memory->destroy(cut); memory->destroy(epsilon); memory->destroy(sigma); memory->destroy(lj1); memory->destroy(lj2); memory->destroy(lj3); memory->destroy(lj4); } } /* ---------------------------------------------------------------------- */ void PairTriLJ::compute(int eflag, int vflag) { int i,j,ii,jj,inum,jnum,itype,jtype; int ni,nj,npi,npj,ifirst,jfirst; double xtmp,ytmp,ztmp,delx,dely,delz,evdwl,fpair; double rsq,r2inv,r6inv,term1,term2,sig,sig3,forcelj; double dxi,dxj,dyi,dyj,dzi,dzj; double xi[3],xj[3],fi[3],fj[3],ti[3],tj[3],p[3][3]; double dc1[3],dc2[3],dc3[3]; int *ilist,*jlist,*numneigh,**firstneigh; ev_init(eflag,vflag); AtomVecTri::Bonus *bonus = avec->bonus; double **x = atom->x; double **f = atom->f; double **torque = atom->torque; int *tri = atom->tri; int *type = atom->type; int nlocal = atom->nlocal; int nall = nlocal + atom->nghost; int newton_pair = force->newton_pair; inum = list->inum; ilist = list->ilist; numneigh = list->numneigh; firstneigh = list->firstneigh; // grow discrete list if necessary and initialize if (nall > nmax) { nmax = nall; memory->destroy(dnum); memory->destroy(dfirst); memory->create(dnum,nall,"pair:dnum"); memory->create(dfirst,nall,"pair:dfirst"); } for (i = 0; i < nall; i++) dnum[i] = 0; ndiscrete = 0; // loop over neighbors of my atoms for (ii = 0; ii < inum; ii++) { i = ilist[ii]; xtmp = x[i][0]; ytmp = x[i][1]; ztmp = x[i][2]; itype = type[i]; jlist = firstneigh[i]; jnum = numneigh[i]; for (jj = 0; jj < jnum; jj++) { j = jlist[jj]; j &= NEIGHMASK; delx = xtmp - x[j][0]; dely = ytmp - x[j][1]; delz = ztmp - x[j][2]; rsq = delx*delx + dely*dely + delz*delz; jtype = type[j]; if (rsq >= cutsq[itype][jtype]) continue; // tri/tri interactions = NxN particles // c1,c2,c3 = corner pts of triangle I or J evdwl = 0.0; if (tri[i] >= 0 && tri[j] >= 0) { if (dnum[i] == 0) { MathExtra::quat_to_mat(bonus[tri[i]].quat,p); MathExtra::matvec(p,bonus[tri[i]].c1,dc1); MathExtra::matvec(p,bonus[tri[i]].c2,dc2); MathExtra::matvec(p,bonus[tri[i]].c3,dc3); dfirst[i] = ndiscrete; discretize(i,sigma[itype][itype],dc1,dc2,dc3); dnum[i] = ndiscrete - dfirst[i]; } npi = dnum[i]; ifirst = dfirst[i]; if (dnum[j] == 0) { MathExtra::quat_to_mat(bonus[tri[j]].quat,p); MathExtra::matvec(p,bonus[tri[j]].c1,dc1); MathExtra::matvec(p,bonus[tri[j]].c2,dc2); MathExtra::matvec(p,bonus[tri[j]].c3,dc3); dfirst[j] = ndiscrete; discretize(j,sigma[jtype][jtype],dc1,dc2,dc3); dnum[j] = ndiscrete - dfirst[j]; } npj = dnum[j]; jfirst = dfirst[j]; for (ni = 0; ni < npi; ni++) { dxi = discrete[ifirst+ni].dx; dyi = discrete[ifirst+ni].dy; dzi = discrete[ifirst+ni].dz; for (nj = 0; nj < npj; nj++) { dxj = discrete[jfirst+nj].dx; dyj = discrete[jfirst+nj].dy; dzj = discrete[jfirst+nj].dz; xi[0] = x[i][0] + dxi; xi[1] = x[i][1] + dyi; xi[2] = x[i][2] + dzi; xj[0] = x[j][0] + dxj; xj[1] = x[j][1] + dyj; xj[2] = x[j][2] + dzj; delx = xi[0] - xj[0]; dely = xi[1] - xj[1]; delz = xi[2] - xj[2]; rsq = delx*delx + dely*dely + delz*delz; sig = 0.5 * (discrete[ifirst+ni].sigma+discrete[jfirst+nj].sigma); sig3 = sig*sig*sig; term2 = 24.0*epsilon[itype][jtype] * sig3*sig3; term1 = 2.0 * term2 * sig3*sig3; r2inv = 1.0/rsq; r6inv = r2inv*r2inv*r2inv; forcelj = r6inv * (term1*r6inv - term2); fpair = forcelj*r2inv; if (eflag) evdwl += r6inv*(term1/12.0*r6inv-term2/6.0); fi[0] = delx*fpair; fi[1] = dely*fpair; fi[2] = delz*fpair; f[i][0] += fi[0]; f[i][1] += fi[1]; f[i][2] += fi[2]; ti[0] = dyi*fi[2] - dzi*fi[1]; ti[1] = dzi*fi[0] - dxi*fi[2]; ti[2] = dxi*fi[1] - dyi*fi[0]; torque[i][0] += ti[0]; torque[i][1] += ti[1]; torque[i][2] += ti[2]; if (newton_pair || j < nlocal) { fj[0] = -delx*fpair; fj[1] = -dely*fpair; fj[2] = -delz*fpair; f[j][0] += fj[0]; f[j][1] += fj[1]; f[j][2] += fj[2]; tj[0] = dyj*fj[2] - dzj*fj[1]; tj[1] = dzj*fj[0] - dxj*fj[2]; tj[2] = dxj*fj[1] - dyj*fj[0]; torque[j][0] += tj[0]; torque[j][1] += tj[1]; torque[j][2] += tj[2]; } } } // tri/particle interaction = Nx1 particles // c1,c2,c3 = corner pts of triangle I } else if (tri[i] >= 0) { if (dnum[i] == 0) { MathExtra::quat_to_mat(bonus[tri[i]].quat,p); MathExtra::matvec(p,bonus[tri[i]].c1,dc1); MathExtra::matvec(p,bonus[tri[i]].c2,dc2); MathExtra::matvec(p,bonus[tri[i]].c3,dc3); dfirst[i] = ndiscrete; discretize(i,sigma[itype][itype],dc1,dc2,dc3); dnum[i] = ndiscrete - dfirst[i]; } npi = dnum[i]; ifirst = dfirst[i]; for (ni = 0; ni < npi; ni++) { dxi = discrete[ifirst+ni].dx; dyi = discrete[ifirst+ni].dy; dzi = discrete[ifirst+ni].dz; xi[0] = x[i][0] + dxi; xi[1] = x[i][1] + dyi; xi[2] = x[i][2] + dzi; xj[0] = x[j][0]; xj[1] = x[j][1]; xj[2] = x[j][2]; delx = xi[0] - xj[0]; dely = xi[1] - xj[1]; delz = xi[2] - xj[2]; rsq = delx*delx + dely*dely + delz*delz; sig = 0.5 * (discrete[ifirst+ni].sigma+sigma[jtype][jtype]); sig3 = sig*sig*sig; term2 = 24.0*epsilon[itype][jtype] * sig3*sig3; term1 = 2.0 * term2 * sig3*sig3; r2inv = 1.0/rsq; r6inv = r2inv*r2inv*r2inv; forcelj = r6inv * (term1*r6inv - term2); fpair = forcelj*r2inv; if (eflag) evdwl += r6inv*(term1/12.0*r6inv-term2/6.0); fi[0] = delx*fpair; fi[1] = dely*fpair; fi[2] = delz*fpair; f[i][0] += fi[0]; f[i][1] += fi[1]; f[i][2] += fi[2]; ti[0] = dyi*fi[2] - dzi*fi[1]; ti[1] = dzi*fi[0] - dxi*fi[2]; ti[2] = dxi*fi[1] - dyi*fi[0]; torque[i][2] += ti[0]; torque[i][1] += ti[1]; torque[i][2] += ti[2]; if (newton_pair || j < nlocal) { fj[0] = -delx*fpair; fj[1] = -dely*fpair; fj[2] = -delz*fpair; f[j][0] += fj[0]; f[j][1] += fj[1]; f[j][2] += fj[2]; } } // particle/tri interaction = Nx1 particles // c1,c2,c3 = corner pts of triangle J } else if (tri[j] >= 0) { if (dnum[j] == 0) { MathExtra::quat_to_mat(bonus[tri[j]].quat,p); MathExtra::matvec(p,bonus[tri[j]].c1,dc1); MathExtra::matvec(p,bonus[tri[j]].c2,dc2); MathExtra::matvec(p,bonus[tri[j]].c3,dc3); dfirst[j] = ndiscrete; discretize(j,sigma[jtype][jtype],dc1,dc2,dc3); dnum[j] = ndiscrete - dfirst[j]; } npj = dnum[j]; jfirst = dfirst[j]; for (nj = 0; nj < npj; nj++) { dxj = discrete[jfirst+nj].dx; dyj = discrete[jfirst+nj].dy; dzj = discrete[jfirst+nj].dz; xi[0] = x[i][0]; xi[1] = x[i][1]; xi[2] = x[i][2]; xj[0] = x[j][0] + dxj; xj[1] = x[j][1] + dyj; xj[2] = x[j][2] + dzj; delx = xi[0] - xj[0]; dely = xi[1] - xj[1]; delz = xi[2] - xj[2]; rsq = delx*delx + dely*dely + delz*delz; sig = 0.5 * (sigma[itype][itype]+discrete[jfirst+nj].sigma); sig3 = sig*sig*sig; term2 = 24.0*epsilon[itype][jtype] * sig3*sig3; term1 = 2.0 * term2 * sig3*sig3; r2inv = 1.0/rsq; r6inv = r2inv*r2inv*r2inv; forcelj = r6inv * (term1*r6inv - term2); fpair = forcelj*r2inv; if (eflag) evdwl += r6inv*(term1/12.0*r6inv-term2/6.0); fi[0] = delx*fpair; fi[1] = dely*fpair; fi[2] = delz*fpair; f[i][0] += fi[0]; f[i][1] += fi[1]; f[i][2] += fi[2]; if (newton_pair || j < nlocal) { fj[0] = -delx*fpair; fj[1] = -dely*fpair; fj[2] = -delz*fpair; f[j][0] += fj[0]; f[j][1] += fj[1]; f[j][2] += fj[2]; tj[0] = dyj*fj[2] - dzj*fj[1]; tj[1] = dzj*fj[0] - dxj*fj[2]; tj[2] = dxj*fj[1] - dyj*fj[0]; torque[j][0] += tj[0]; torque[j][1] += tj[1]; torque[j][2] += tj[2]; } } // particle/particle interaction = 1x1 particles } else { r2inv = 1.0/rsq; r6inv = r2inv*r2inv*r2inv; forcelj = r6inv * (lj1[itype][jtype]*r6inv - lj2[itype][jtype]); fpair = forcelj*r2inv; if (eflag) evdwl += r6inv*(lj3[itype][jtype]*r6inv-lj4[itype][jtype]); f[i][0] += delx*fpair; f[i][1] += dely*fpair; f[i][2] += delz*fpair; if (newton_pair || j < nlocal) { f[j][0] -= delx*fpair; f[j][1] -= dely*fpair; f[j][2] -= delz*fpair; } } if (evflag) ev_tally(i,j,nlocal,newton_pair,evdwl,0.0,fpair,delx,dely,delz); } } if (vflag_fdotr) virial_fdotr_compute(); } /* ---------------------------------------------------------------------- allocate all arrays ------------------------------------------------------------------------- */ void PairTriLJ::allocate() { allocated = 1; int n = atom->ntypes; memory->create(setflag,n+1,n+1,"pair:setflag"); for (int i = 1; i <= n; i++) for (int j = i; j <= n; j++) setflag[i][j] = 0; memory->create(cutsq,n+1,n+1,"pair:cutsq"); memory->create(cut,n+1,n+1,"pair:cut"); memory->create(epsilon,n+1,n+1,"pair:epsilon"); memory->create(sigma,n+1,n+1,"pair:sigma"); memory->create(lj1,n+1,n+1,"pair:lj1"); memory->create(lj2,n+1,n+1,"pair:lj2"); memory->create(lj3,n+1,n+1,"pair:lj3"); memory->create(lj4,n+1,n+1,"pair:lj4"); } /* ---------------------------------------------------------------------- global settings ------------------------------------------------------------------------- */ void PairTriLJ::settings(int narg, char **arg) { if (narg != 1) error->all(FLERR,"Illegal pair_style command"); cut_global = utils::numeric(FLERR,arg[0],false,lmp); // reset cutoffs that have been explicitly set if (allocated) { int i,j; for (i = 1; i <= atom->ntypes; i++) for (j = i; j <= atom->ntypes; j++) if (setflag[i][j]) cut[i][j] = cut_global; } } /* ---------------------------------------------------------------------- set coeffs for one or more type pairs ------------------------------------------------------------------------- */ void PairTriLJ::coeff(int narg, char **arg) { if (narg < 4 || narg > 5) error->all(FLERR,"Incorrect args for pair coefficients" + utils::errorurl(21)); if (!allocated) allocate(); int ilo,ihi,jlo,jhi; utils::bounds(FLERR,arg[0],1,atom->ntypes,ilo,ihi,error); utils::bounds(FLERR,arg[1],1,atom->ntypes,jlo,jhi,error); double epsilon_one = utils::numeric(FLERR,arg[2],false,lmp); double sigma_one = utils::numeric(FLERR,arg[3],false,lmp); double cut_one = cut_global; if (narg == 5) cut_one = utils::numeric(FLERR,arg[4],false,lmp); int count = 0; for (int i = ilo; i <= ihi; i++) { for (int j = MAX(jlo,i); j <= jhi; j++) { epsilon[i][j] = epsilon_one; sigma[i][j] = sigma_one; cut[i][j] = cut_one; setflag[i][j] = 1; count++; } } if (count == 0) error->all(FLERR,"Incorrect args for pair coefficients" + utils::errorurl(21)); } /* ---------------------------------------------------------------------- init specific to this pair style ------------------------------------------------------------------------- */ void PairTriLJ::init_style() { avec = dynamic_cast(atom->style_match("tri")); if (!avec) error->all(FLERR,"Pair tri/lj requires atom style tri"); neighbor->add_request(this,NeighConst::REQ_DEFAULT); } /* ---------------------------------------------------------------------- init for one type pair i,j and corresponding j,i ------------------------------------------------------------------------- */ double PairTriLJ::init_one(int i, int j) { if (setflag[i][j] == 0) { epsilon[i][j] = mix_energy(epsilon[i][i],epsilon[j][j], sigma[i][i],sigma[j][j]); sigma[i][j] = mix_distance(sigma[i][i],sigma[j][j]); cut[i][j] = mix_distance(cut[i][i],cut[j][j]); } lj1[i][j] = 48.0 * epsilon[i][j] * pow(sigma[i][j],12.0); lj2[i][j] = 24.0 * epsilon[i][j] * pow(sigma[i][j],6.0); lj3[i][j] = 4.0 * epsilon[i][j] * pow(sigma[i][j],12.0); lj4[i][j] = 4.0 * epsilon[i][j] * pow(sigma[i][j],6.0); epsilon[j][i] = epsilon[i][j]; sigma[j][i] = sigma[i][j]; lj1[j][i] = lj1[i][j]; lj2[j][i] = lj2[i][j]; lj3[j][i] = lj3[i][j]; lj4[j][i] = lj4[i][j]; return cut[i][j]; } /* ---------------------------------------------------------------------- recursively discretize triangle I with displaced corners c1,c2,c3 into N sub-tris no more than sigma in size recurse by making 2 tris via bisecting longest side store new discrete particles in Discrete list ------------------------------------------------------------------------- */ void PairTriLJ::discretize(int i, double sigma, double *c1, double *c2, double *c3) { double centroid[3],dc1[3],dc2[3],dc3[3]; centroid[0] = (c1[0] + c2[0] + c3[0]) / 3.0; centroid[1] = (c1[1] + c2[1] + c3[1]) / 3.0; centroid[2] = (c1[2] + c2[2] + c3[2]) / 3.0; MathExtra::sub3(c1,centroid,dc1); MathExtra::sub3(c2,centroid,dc2); MathExtra::sub3(c3,centroid,dc3); double sigmasq = 0.25 * sigma*sigma; double len1sq = MathExtra::lensq3(dc1); double len2sq = MathExtra::lensq3(dc2); double len3sq = MathExtra::lensq3(dc3); // if sigma sphere overlaps all corner points, add particle at centroid if ((len1sq <= sigmasq) && (len2sq <= sigmasq) && (len3sq <= sigmasq)) { if (ndiscrete == dmax) { dmax += DELTA; discrete = (Discrete *) memory->srealloc(discrete,dmax*sizeof(Discrete),"pair:discrete"); } discrete[ndiscrete].dx = centroid[0]; discrete[ndiscrete].dy = centroid[1]; discrete[ndiscrete].dz = centroid[2]; sigmasq = MAX(len1sq,len2sq); sigmasq = MAX(sigmasq,len3sq); discrete[ndiscrete].sigma = 2.0 * sqrt(sigmasq); ndiscrete++; return; } // else break triangle into 2 sub-triangles and recurse double c12[3],c23[3],c13[3],mid[3]; MathExtra::sub3(c2,c3,c23); len1sq = MathExtra::lensq3(c23); MathExtra::sub3(c1,c3,c13); len2sq = MathExtra::lensq3(c13); MathExtra::sub3(c1,c2,c12); len3sq = MathExtra::lensq3(c12); double maxsq = MAX(len1sq,len2sq); maxsq = MAX(maxsq,len3sq); if (len1sq == maxsq) { MathExtra::add3(c2,c3,mid); MathExtra::scale3(0.5,mid); discretize(i,sigma,c1,c2,mid); discretize(i,sigma,c1,c3,mid); } else if (len2sq == maxsq) { MathExtra::add3(c1,c3,mid); MathExtra::scale3(0.5,mid); discretize(i,sigma,c2,c1,mid); discretize(i,sigma,c2,c3,mid); } else { MathExtra::add3(c1,c2,mid); MathExtra::scale3(0.5,mid); discretize(i,sigma,c3,c1,mid); discretize(i,sigma,c3,c2,mid); } } /* ---------------------------------------------------------------------- recursively discretize triangle I with displaced corners c1,c2,c3 into N sub-tris no more than sigma in size recurse by making 6 tris via centroid store new discrete particles in Discrete list ------------------------------------------------------------------------- */ /* void PairTriLJ::discretize(int i, double sigma, double *c1, double *c2, double *c3) { double centroid[3],dc1[3],dc2[3],dc3[3]; centroid[0] = (c1[0] + c2[0] + c3[0]) / 3.0; centroid[1] = (c1[1] + c2[1] + c3[1]) / 3.0; centroid[2] = (c1[2] + c2[2] + c3[2]) / 3.0; MathExtra::sub3(c1,centroid,dc1); MathExtra::sub3(c2,centroid,dc2); MathExtra::sub3(c3,centroid,dc3); double sigmasq = 0.25 * sigma*sigma; double len1sq = MathExtra::lensq3(dc1); double len2sq = MathExtra::lensq3(dc2); double len3sq = MathExtra::lensq3(dc3); // if sigma sphere overlaps all corner points, add particle at centroid if (len1sq <= sigmasq && len2sq <= sigmasq & len3sq <= sigmasq) { if (ndiscrete == dmax) { dmax += DELTA; discrete = (Discrete *) memory->srealloc(discrete,dmax*sizeof(Discrete),"pair:discrete"); } discrete[ndiscrete].dx = centroid[0]; discrete[ndiscrete].dy = centroid[1]; discrete[ndiscrete].dz = centroid[2]; sigmasq = MAX(len1sq,len2sq); sigmasq = MAX(sigmasq,len3sq); discrete[ndiscrete].sigma = 2.0 * sqrt(sigmasq); ndiscrete++; return; } // else break triangle into 6 sub-triangles and recurse double c1c2mid[3],c2c3mid[3],c1c3mid[3]; MathExtra::add3(c1,c2,c1c2mid); MathExtra::scale3(0.5,c1c2mid); MathExtra::add3(c2,c3,c2c3mid); MathExtra::scale3(0.5,c2c3mid); MathExtra::add3(c1,c3,c1c3mid); MathExtra::scale3(0.5,c1c3mid); discretize(i,sigma,c1,c1c2mid,centroid); discretize(i,sigma,c1,c1c3mid,centroid); discretize(i,sigma,c2,c2c3mid,centroid); discretize(i,sigma,c2,c1c2mid,centroid); discretize(i,sigma,c3,c1c3mid,centroid); discretize(i,sigma,c3,c2c3mid,centroid); } */