\documentclass[12pt]{article} \begin{document} \begin{eqnarray*} T_{pq} = T_{ij} & = & \frac{q_j}{r^3} \left[ 1 - 3\left(\frac{r}{r_c}\right)^{\!2} + 2\left(\frac{r}{r_c}\right)^{\!3}\right] (\vec{p_i}\times\vec{r}) \\ T_{qp} = T_{ji} & = & - \frac{q_i}{r^3} \left[ 1 - 3\left(\frac{r}{r_c}\right)^{\!2} + 2\left(\frac{r}{r_c}\right)^{\!3} \right] (\vec{p_j}\times\vec{r}) \\ T_{pp} = T_{ij} & = & -\frac{1}{r^3}\left[1-4\left(\frac{r}{r_c}\right)^{\!3} + e3\left(\frac{r}{r_c}\right)^{\!4}\right] (\vec{p_i} \times \vec{p_j}) + \\ & & \frac{3}{r^5}\left[1-4\left(\frac{r}{r_c}\right)^{\!3} + 3\left(\frac{r}{r_c}\right)^{\!4}\right] (\vec{p_j}\bullet\vec{r}) (\vec{p_i} \times \vec{r}) \\ T_{pp} = T_{ji} & = & -\frac{1}{r^3}\left[1-4\left(\frac{r}{r_c}\right)^{\!3} + 3\left(\frac{r}{r_c}\right)^{\!4}\right](\vec{p_j} \times \vec{p_i}) + \\ & & \frac{3}{r^5}\left[1-4\left(\frac{r}{r_c}\right)^{\!3} + 3\left(\frac{r}{r_c}\right)^{\!4}\right] (\vec{p_i} \bullet \vec{r}) (\vec{p_j} \times \vec{r}) \\ \end{eqnarray*} \end{document}