\documentstyle[12pt]{article} \begin{document} $$ U ( \mathbf{A}_1, \mathbf{A}_2, \mathbf{r}_{12} ) = U_r ( \mathbf{A}_1, \mathbf{A}_2, \mathbf{r}_{12}, \gamma ) \cdot \eta_{12} ( \mathbf{A}_1, \mathbf{A}_2, \upsilon ) \cdot \chi_{12} ( \mathbf{A}_1, \mathbf{A}_2, \mathbf{r}_{12}, \mu ) $$ $$ U_r = 4 \epsilon ( \varrho^{12} - \varrho^6) $$ $$ \varrho = \frac{\sigma}{ h_{12} + \gamma \sigma} $$ \end{document}