/* ---------------------------------------------------------------------- LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator Original Version: http://lammps.sandia.gov, Sandia National Laboratories Steve Plimpton, sjplimp@sandia.gov See the README file in the top-level LAMMPS directory. ----------------------------------------------------------------------- USER-CUDA Package and associated modifications: https://sourceforge.net/projects/lammpscuda/ Christian Trott, christian.trott@tu-ilmenau.de Lars Winterfeld, lars.winterfeld@tu-ilmenau.de Theoretical Physics II, University of Technology Ilmenau, Germany See the README file in the USER-CUDA directory. This software is distributed under the GNU General Public License. ------------------------------------------------------------------------- */ #include #define MY_PREFIX comm_cuda #include "cuda_shared.h" #include "cuda_common.h" #include "crm_cuda_utils.cu" #include "comm_cuda_cu.h" #include "comm_cuda_kernel.cu" #include void Cuda_CommCuda_UpdateBuffer(cuda_shared_data* sdata,int n) { int size=n*3*sizeof(X_FLOAT); if(sdata->buffersizebuffer,sdata->buffersize);) CudaWrapper_FreeCudaData(sdata->buffer,sdata->buffersize); sdata->buffer = CudaWrapper_AllocCudaData(size); sdata->buffersize=size; sdata->buffer_new++; MYDBG(printf("New buffer at %p with %i kB\n",sdata->buffer,sdata->buffersize);) } cudaMemcpyToSymbol(MY_CONST(buffer), & sdata->buffer, sizeof(int*) ); } void Cuda_CommCuda_UpdateNmax(cuda_shared_data* sdata) { cudaMemcpyToSymbolAsync(MY_CONST(nlocal) , & sdata->atom.nlocal , sizeof(int) ); cudaMemcpyToSymbolAsync(MY_CONST(nmax) , & sdata->atom.nmax , sizeof(int) ); cudaMemcpyToSymbolAsync(MY_CONST(x) , & sdata->atom.x .dev_data, sizeof(X_FLOAT*) ); cudaMemcpyToSymbolAsync(MY_CONST(v) , & sdata->atom.v .dev_data, sizeof(X_FLOAT*) ); cudaMemcpyToSymbolAsync(MY_CONST(f) , & sdata->atom.f .dev_data, sizeof(F_FLOAT*) ); cudaMemcpyToSymbolAsync(MY_CONST(type) , & sdata->atom.type .dev_data, sizeof(int*) ); } void Cuda_CommCuda_Init(cuda_shared_data* sdata) { Cuda_CommCuda_UpdateNmax(sdata); int ntypesp=sdata->atom.ntypes+1; cudaMemcpyToSymbol(MY_CONST(cuda_ntypes) , &ntypesp, sizeof(int)); cudaMemcpyToSymbol(MY_CONST(prd) , sdata->domain.prd, 3*sizeof(X_FLOAT)); cudaMemcpyToSymbol(MY_CONST(flag) , &sdata->flag, sizeof(int*)); cudaMemcpyToSymbol(MY_CONST(debugdata) , &sdata->debugdata, sizeof(int*)); } int Cuda_CommCuda_PackComm(cuda_shared_data* sdata,int n,int iswap,void* buf_send,int* pbc,int pbc_flag) { timespec time1,time2; if(sdata->atom.update_nmax) Cuda_CommCuda_UpdateNmax(sdata); if(sdata->atom.update_nlocal) cudaMemcpyToSymbol(MY_CONST(nlocal) , & sdata->atom.nlocal , sizeof(int) ); int size=n*3*sizeof(X_FLOAT); if(sdata->buffer_new or (size>sdata->buffersize)) Cuda_CommCuda_UpdateBuffer(sdata,n); X_FLOAT dx=0.0; X_FLOAT dy=0.0; X_FLOAT dz=0.0; if (pbc_flag != 0) { if (sdata->domain.triclinic == 0) { dx = pbc[0]*sdata->domain.prd[0]; dy = pbc[1]*sdata->domain.prd[1]; dz = pbc[2]*sdata->domain.prd[2]; } else { dx = pbc[0]*sdata->domain.prd[0] + pbc[5]*sdata->domain.xy + pbc[4]*sdata->domain.xz; dy = pbc[1]*sdata->domain.prd[1] + pbc[3]*sdata->domain.yz; dz = pbc[2]*sdata->domain.prd[2]; }} int3 layout=getgrid(n); dim3 threads(layout.z, 1, 1); dim3 grid(layout.x, layout.y, 1); if(sdata->atom.nlocal>0) { cudaMemset( sdata->flag,0,sizeof(int)); clock_gettime(CLOCK_REALTIME,&time1); void* buf=sdata->overlap_comm?sdata->comm.buf_send_dev[iswap]:sdata->buffer; Cuda_CommCuda_PackComm_Kernel<<>>((int*) sdata->comm.sendlist.dev_data,n ,sdata->comm.maxlistlength,iswap,dx,dy,dz,buf); cudaThreadSynchronize(); clock_gettime(CLOCK_REALTIME,&time2); sdata->cuda_timings.comm_forward_kernel_pack+= time2.tv_sec-time1.tv_sec+1.0*(time2.tv_nsec-time1.tv_nsec)/1000000000; CUT_CHECK_ERROR("Cuda_CommCuda_PackComm: Kernel execution failed"); if(not sdata->overlap_comm) cudaMemcpy(buf_send, sdata->buffer, n*3*sizeof(X_FLOAT), cudaMemcpyDeviceToHost); //cudaMemcpy(buf_send, sdata->comm.buf_send_dev[iswap], n*3*sizeof(X_FLOAT), cudaMemcpyDeviceToHost); clock_gettime(CLOCK_REALTIME,&time1); sdata->cuda_timings.comm_forward_download+= time1.tv_sec-time2.tv_sec+1.0*(time1.tv_nsec-time2.tv_nsec)/1000000000; int aflag; cudaMemcpy(&aflag, sdata->flag, sizeof(int), cudaMemcpyDeviceToHost); if(aflag!=0) printf("aflag PackComm: %i\n",aflag); CUT_CHECK_ERROR("Cuda_CommCuda_PackComm: Kernel execution failed"); } return 3*n; } int Cuda_CommCuda_PackCommVel(cuda_shared_data* sdata,int n,int iswap,void* buf_send,int* pbc,int pbc_flag) { timespec time1,time2; if(sdata->atom.update_nmax) Cuda_CommCuda_UpdateNmax(sdata); if(sdata->atom.update_nlocal) cudaMemcpyToSymbol(MY_CONST(nlocal) , & sdata->atom.nlocal , sizeof(int) ); int size=n*6*sizeof(X_FLOAT); if(sdata->buffer_new or (size>sdata->buffersize)) Cuda_CommCuda_UpdateBuffer(sdata,n); X_FLOAT dx=0.0; X_FLOAT dy=0.0; X_FLOAT dz=0.0; if (pbc_flag != 0) { if (sdata->domain.triclinic == 0) { dx = pbc[0]*sdata->domain.prd[0]; dy = pbc[1]*sdata->domain.prd[1]; dz = pbc[2]*sdata->domain.prd[2]; } else { dx = pbc[0]*sdata->domain.prd[0] + pbc[5]*sdata->domain.xy + pbc[4]*sdata->domain.xz; dy = pbc[1]*sdata->domain.prd[1] + pbc[3]*sdata->domain.yz; dz = pbc[2]*sdata->domain.prd[2]; }} int3 layout=getgrid(n); dim3 threads(layout.z, 1, 1); dim3 grid(layout.x, layout.y, 1); if(sdata->atom.nlocal>0) { cudaMemset( sdata->flag,0,sizeof(int)); clock_gettime(CLOCK_REALTIME,&time1); void* buf=sdata->overlap_comm?sdata->comm.buf_send_dev[iswap]:sdata->buffer; Cuda_CommCuda_PackComm_Kernel<<>>((int*) sdata->comm.sendlist.dev_data,n ,sdata->comm.maxlistlength,iswap,dx,dy,dz,buf); cudaThreadSynchronize(); clock_gettime(CLOCK_REALTIME,&time2); sdata->cuda_timings.comm_forward_kernel_pack+= time2.tv_sec-time1.tv_sec+1.0*(time2.tv_nsec-time1.tv_nsec)/1000000000; CUT_CHECK_ERROR("Cuda_CommCuda_PackComm: Kernel execution failed"); if(not sdata->overlap_comm) cudaMemcpy(buf_send, sdata->buffer, n*6*sizeof(X_FLOAT), cudaMemcpyDeviceToHost); //cudaMemcpy(buf_send, sdata->comm.buf_send_dev[iswap], n*3*sizeof(X_FLOAT), cudaMemcpyDeviceToHost); clock_gettime(CLOCK_REALTIME,&time1); sdata->cuda_timings.comm_forward_download+= time1.tv_sec-time2.tv_sec+1.0*(time1.tv_nsec-time2.tv_nsec)/1000000000; int aflag; cudaMemcpy(&aflag, sdata->flag, sizeof(int), cudaMemcpyDeviceToHost); if(aflag!=0) printf("aflag PackComm: %i\n",aflag); CUT_CHECK_ERROR("Cuda_CommCuda_PackComm: Kernel execution failed"); } return 6*n; } int Cuda_CommCuda_PackComm_Self(cuda_shared_data* sdata,int n,int iswap,int first,int* pbc,int pbc_flag) { MYDBG(printf(" # CUDA: CommCuda_PackComm_Self\n");) timespec time1,time2; if(sdata->atom.update_nmax) Cuda_CommCuda_UpdateNmax(sdata); if(sdata->atom.update_nlocal) cudaMemcpyToSymbol(MY_CONST(nlocal) , & sdata->atom.nlocal , sizeof(int) ); int size=n*3*sizeof(X_FLOAT); if(sdata->buffer_new or (size>sdata->buffersize)) Cuda_CommCuda_UpdateBuffer(sdata,n); static int count=-1; count++; X_FLOAT dx=0.0; X_FLOAT dy=0.0; X_FLOAT dz=0.0; if (pbc_flag != 0) { if (sdata->domain.triclinic == 0) { dx = pbc[0]*sdata->domain.prd[0]; dy = pbc[1]*sdata->domain.prd[1]; dz = pbc[2]*sdata->domain.prd[2]; } else { dx = pbc[0]*sdata->domain.prd[0] + pbc[5]*sdata->domain.xy + pbc[4]*sdata->domain.xz; dy = pbc[1]*sdata->domain.prd[1] + pbc[3]*sdata->domain.yz; dz = pbc[2]*sdata->domain.prd[2]; }} int3 layout=getgrid(n); dim3 threads(layout.z, 1, 1); dim3 grid(layout.x, layout.y, 1); if(sdata->atom.nlocal>0) { clock_gettime(CLOCK_REALTIME,&time1); Cuda_CommCuda_PackComm_Self_Kernel<<>>((int*) sdata->comm.sendlist.dev_data,n,sdata->comm.maxlistlength,iswap,dx,dy,dz,first); cudaThreadSynchronize(); clock_gettime(CLOCK_REALTIME,&time2); sdata->cuda_timings.comm_forward_kernel_self+= time2.tv_sec-time1.tv_sec+1.0*(time2.tv_nsec-time1.tv_nsec)/1000000000; CUT_CHECK_ERROR("Cuda_CommCuda_PackComm_Self: Kernel execution failed"); } return 3*n; } int Cuda_CommCuda_PackCommVel_Self(cuda_shared_data* sdata,int n,int iswap,int first,int* pbc,int pbc_flag) { MYDBG(printf(" # CUDA: CommCuda_PackComm_Self\n");) timespec time1,time2; if(sdata->atom.update_nmax) Cuda_CommCuda_UpdateNmax(sdata); if(sdata->atom.update_nlocal) cudaMemcpyToSymbol(MY_CONST(nlocal) , & sdata->atom.nlocal , sizeof(int) ); int size=n*6*sizeof(X_FLOAT); if(sdata->buffer_new or (size>sdata->buffersize)) Cuda_CommCuda_UpdateBuffer(sdata,n); static int count=-1; count++; X_FLOAT dx=0.0; X_FLOAT dy=0.0; X_FLOAT dz=0.0; if (pbc_flag != 0) { if (sdata->domain.triclinic == 0) { dx = pbc[0]*sdata->domain.prd[0]; dy = pbc[1]*sdata->domain.prd[1]; dz = pbc[2]*sdata->domain.prd[2]; } else { dx = pbc[0]*sdata->domain.prd[0] + pbc[5]*sdata->domain.xy + pbc[4]*sdata->domain.xz; dy = pbc[1]*sdata->domain.prd[1] + pbc[3]*sdata->domain.yz; dz = pbc[2]*sdata->domain.prd[2]; }} int3 layout=getgrid(n); dim3 threads(layout.z, 1, 1); dim3 grid(layout.x, layout.y, 1); if(sdata->atom.nlocal>0) { clock_gettime(CLOCK_REALTIME,&time1); Cuda_CommCuda_PackComm_Self_Kernel<<>>((int*) sdata->comm.sendlist.dev_data,n,sdata->comm.maxlistlength,iswap,dx,dy,dz,first); cudaThreadSynchronize(); clock_gettime(CLOCK_REALTIME,&time2); sdata->cuda_timings.comm_forward_kernel_self+= time2.tv_sec-time1.tv_sec+1.0*(time2.tv_nsec-time1.tv_nsec)/1000000000; CUT_CHECK_ERROR("Cuda_CommCuda_PackComm_Self: Kernel execution failed"); } return 6*n; } void Cuda_CommCuda_UnpackComm(cuda_shared_data* sdata,int n,int first,void* buf_recv,int iswap) { timespec time1,time2; if(sdata->atom.update_nmax) Cuda_CommCuda_UpdateNmax(sdata); if(sdata->atom.update_nlocal) cudaMemcpyToSymbol(MY_CONST(nlocal) , & sdata->atom.nlocal , sizeof(int) ); int size=n*3*sizeof(X_FLOAT); if(sdata->buffer_new or (size>sdata->buffersize)) Cuda_CommCuda_UpdateBuffer(sdata,n); int3 layout=getgrid(n); dim3 threads(layout.z, 1, 1); dim3 grid(layout.x, layout.y, 1); if(sdata->atom.nlocal>0) { clock_gettime(CLOCK_REALTIME,&time1); if(not sdata->overlap_comm||iswap<0) cudaMemcpy(sdata->buffer,(void*)buf_recv, n*3*sizeof(X_FLOAT), cudaMemcpyHostToDevice); clock_gettime(CLOCK_REALTIME,&time2); sdata->cuda_timings.comm_forward_upload+= time2.tv_sec-time1.tv_sec+1.0*(time2.tv_nsec-time1.tv_nsec)/1000000000; void* buf=(sdata->overlap_comm&&iswap>=0)?sdata->comm.buf_recv_dev[iswap]:sdata->buffer; Cuda_CommCuda_UnpackComm_Kernel<<>>(n,first,buf); cudaThreadSynchronize(); clock_gettime(CLOCK_REALTIME,&time1); sdata->cuda_timings.comm_forward_kernel_unpack+= time1.tv_sec-time2.tv_sec+1.0*(time1.tv_nsec-time2.tv_nsec)/1000000000; CUT_CHECK_ERROR("Cuda_CommCuda_UnpackComm: Kernel execution failed"); } } void Cuda_CommCuda_UnpackCommVel(cuda_shared_data* sdata,int n,int first,void* buf_recv,int iswap) { timespec time1,time2; if(sdata->atom.update_nmax) Cuda_CommCuda_UpdateNmax(sdata); if(sdata->atom.update_nlocal) cudaMemcpyToSymbol(MY_CONST(nlocal) , & sdata->atom.nlocal , sizeof(int) ); int size=n*6*sizeof(X_FLOAT); if(sdata->buffer_new or (size>sdata->buffersize)) Cuda_CommCuda_UpdateBuffer(sdata,n); int3 layout=getgrid(n); dim3 threads(layout.z, 1, 1); dim3 grid(layout.x, layout.y, 1); if(sdata->atom.nlocal>0) { clock_gettime(CLOCK_REALTIME,&time1); if(not sdata->overlap_comm||iswap<0) cudaMemcpy(sdata->buffer,(void*)buf_recv, n*6*sizeof(X_FLOAT), cudaMemcpyHostToDevice); clock_gettime(CLOCK_REALTIME,&time2); sdata->cuda_timings.comm_forward_upload+= time2.tv_sec-time1.tv_sec+1.0*(time2.tv_nsec-time1.tv_nsec)/1000000000; void* buf=(sdata->overlap_comm&&iswap>=0)?sdata->comm.buf_recv_dev[iswap]:sdata->buffer; Cuda_CommCuda_UnpackComm_Kernel<<>>(n,first,buf); cudaThreadSynchronize(); clock_gettime(CLOCK_REALTIME,&time1); sdata->cuda_timings.comm_forward_kernel_unpack+= time1.tv_sec-time2.tv_sec+1.0*(time1.tv_nsec-time2.tv_nsec)/1000000000; CUT_CHECK_ERROR("Cuda_CommCuda_UnpackComm: Kernel execution failed"); } } int Cuda_CommCuda_PackReverse(cuda_shared_data* sdata,int n,int first,void* buf_send) { if(sdata->atom.update_nmax) Cuda_CommCuda_UpdateNmax(sdata); if(sdata->atom.update_nlocal) cudaMemcpyToSymbol(MY_CONST(nlocal) , & sdata->atom.nlocal , sizeof(int) ); int size=n*3*sizeof(F_FLOAT); if(sdata->buffer_new or (size>sdata->buffersize)) Cuda_CommCuda_UpdateBuffer(sdata,n); F_FLOAT* buf=(F_FLOAT*)buf_send; F_FLOAT* f_dev=(F_FLOAT*)sdata->atom.f.dev_data; f_dev+=first; cudaMemcpy(buf, f_dev, n*sizeof(F_FLOAT), cudaMemcpyDeviceToHost); buf+=n; f_dev+=sdata->atom.nmax; cudaMemcpy(buf, f_dev, n*sizeof(F_FLOAT), cudaMemcpyDeviceToHost); buf+=n; f_dev+=sdata->atom.nmax; cudaMemcpy(buf, f_dev, n*sizeof(F_FLOAT), cudaMemcpyDeviceToHost); return n*3; } void Cuda_CommCuda_UnpackReverse(cuda_shared_data* sdata,int n,int iswap,void* buf_recv) { if(sdata->atom.update_nmax) Cuda_CommCuda_UpdateNmax(sdata); if(sdata->atom.update_nlocal) cudaMemcpyToSymbol(MY_CONST(nlocal) , & sdata->atom.nlocal , sizeof(int) ); int size=n*3*sizeof(F_FLOAT); if(sdata->buffer_new or (size>sdata->buffersize)) Cuda_CommCuda_UpdateBuffer(sdata,n); int3 layout=getgrid(n); dim3 threads(layout.z, 1, 1); dim3 grid(layout.x, layout.y, 1); if(sdata->atom.nlocal>0) { cudaMemcpy(sdata->buffer,buf_recv, size, cudaMemcpyHostToDevice); Cuda_CommCuda_UnpackReverse_Kernel<<>>((int*) sdata->comm.sendlist.dev_data,n,sdata->comm.maxlistlength,iswap); cudaThreadSynchronize(); CUT_CHECK_ERROR("Cuda_CommCuda_UnpackReverse: Kernel execution failed"); } } void Cuda_CommCuda_UnpackReverse_Self(cuda_shared_data* sdata,int n,int iswap,int first) { if(sdata->atom.update_nmax) Cuda_CommCuda_UpdateNmax(sdata); if(sdata->atom.update_nlocal) cudaMemcpyToSymbol(MY_CONST(nlocal) , & sdata->atom.nlocal , sizeof(int) ); int size=n*3*sizeof(X_FLOAT); if(sdata->buffer_new or (size>sdata->buffersize)) Cuda_CommCuda_UpdateBuffer(sdata,n); int3 layout=getgrid(n); dim3 threads(layout.z, 1, 1); dim3 grid(layout.x, layout.y, 1); if(sdata->atom.nlocal>0) { Cuda_CommCuda_UnpackReverse_Self_Kernel<<>>((int*) sdata->comm.sendlist.dev_data,n,sdata->comm.maxlistlength,iswap,first); cudaThreadSynchronize(); CUT_CHECK_ERROR("Cuda_CommCuda_PackReverse_Self: Kernel execution failed"); } } int Cuda_CommCuda_BuildSendlist(cuda_shared_data* sdata,int bordergroup,int ineed,int style,int atom_nfirst,int nfirst,int nlast,int dim,int iswap) { MYDBG(printf(" # CUDA: CommCuda_BuildSendlist\n");) timespec time1,time2; if(sdata->atom.update_nmax) Cuda_CommCuda_UpdateNmax(sdata); if(sdata->atom.update_nlocal) cudaMemcpyToSymbol(MY_CONST(nlocal) , & sdata->atom.nlocal , sizeof(int) ); if(sdata->buffer_new or (80>sdata->buffersize)) Cuda_CommCuda_UpdateBuffer(sdata,10); int n; if (!bordergroup || ineed >= 2) n=nlast-nfirst+1; else { n=atom_nfirst; if(nlast-sdata->atom.nlocal+1>n) n=nlast-sdata->atom.nlocal+1; } int3 layout=getgrid(n,0,512,true); dim3 threads(layout.z, 1, 1); dim3 grid(layout.x+1, layout.y, 1); cudaMemset((int*) (sdata->buffer),0,sizeof(int)); clock_gettime(CLOCK_REALTIME,&time1); if(style==1) Cuda_CommCuda_BuildSendlist_Single<<>>(bordergroup, ineed, atom_nfirst, nfirst, nlast, dim, iswap,(X_FLOAT*) sdata->comm.slablo.dev_data,(X_FLOAT*) sdata->comm.slabhi.dev_data,(int*) sdata->comm.sendlist.dev_data,sdata->comm.maxlistlength); else Cuda_CommCuda_BuildSendlist_Multi<<>>(bordergroup, ineed, atom_nfirst, nfirst, nlast, dim, iswap,(X_FLOAT*) sdata->comm.multilo.dev_data,(X_FLOAT*) sdata->comm.multihi.dev_data,(int*) sdata->comm.sendlist.dev_data,sdata->comm.maxlistlength); cudaThreadSynchronize(); clock_gettime(CLOCK_REALTIME,&time2); sdata->cuda_timings.comm_border_kernel_buildlist+= time2.tv_sec-time1.tv_sec+1.0*(time2.tv_nsec-time1.tv_nsec)/1000000000; CUT_CHECK_ERROR("Cuda_CommCuda_BuildSendlist: Kernel execution failed"); int nsend; cudaMemcpy(&nsend, sdata->buffer, sizeof(int), cudaMemcpyDeviceToHost); return nsend; }