/* ---------------------------------------------------------------------- LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator Original Version: http://lammps.sandia.gov, Sandia National Laboratories Steve Plimpton, sjplimp@sandia.gov See the README file in the top-level LAMMPS directory. ----------------------------------------------------------------------- USER-CUDA Package and associated modifications: https://sourceforge.net/projects/lammpscuda/ Christian Trott, christian.trott@tu-ilmenau.de Lars Winterfeld, lars.winterfeld@tu-ilmenau.de Theoretical Physics II, University of Technology Ilmenau, Germany See the README file in the USER-CUDA directory. This software is distributed under the GNU General Public License. ------------------------------------------------------------------------- */ extern __shared__ ENERGY_FLOAT sharedmem[]; __global__ void Cuda_ComputeTempPartialCuda_Scalar_Kernel(int groupbit,int xflag,int yflag,int zflag) { int i=(blockIdx.x*gridDim.y+blockIdx.y)*blockDim.x+threadIdx.x; sharedmem[threadIdx.x]=0; if(i < _nlocal) { if (_rmass_flag) { if (_mask[i] & groupbit) sharedmem[threadIdx.x] = (_v[i]*_v[i]*xflag + _v[i+_nmax]*_v[i+_nmax]*yflag + _v[i+2*_nmax]*_v[i+2*_nmax]*zflag) * _rmass[i]; } else { if (_mask[i] & groupbit) sharedmem[threadIdx.x] = (_v[i]*_v[i]*xflag + _v[i+_nmax]*_v[i+_nmax]*yflag + _v[i+2*_nmax]*_v[i+2*_nmax]*zflag) * (_mass[_type[i]]); } } reduceBlock(sharedmem); ENERGY_FLOAT* buffer=(ENERGY_FLOAT*) _buffer; if(threadIdx.x==0) { buffer[blockIdx.x*gridDim.y+blockIdx.y]=sharedmem[0]; } } __global__ void Cuda_ComputeTempPartialCuda_Vector_Kernel(int groupbit,int xflag,int yflag,int zflag) { int i=(blockIdx.x*gridDim.y+blockIdx.y)*blockDim.x+threadIdx.x; sharedmem[threadIdx.x]=0; sharedmem[threadIdx.x+blockDim.x]=0; sharedmem[threadIdx.x+2*blockDim.x]=0; sharedmem[threadIdx.x+3*blockDim.x]=0; sharedmem[threadIdx.x+4*blockDim.x]=0; sharedmem[threadIdx.x+5*blockDim.x]=0; if(i < _nlocal) if (_mask[i] & groupbit) { V_FLOAT massone; if (_rmass_flag) massone = _rmass[i]; else massone = _mass[_type[i]]; sharedmem[threadIdx.x] = massone * _v[i]*_v[i]*xflag; sharedmem[threadIdx.x+blockDim.x] = massone * _v[i+_nmax]*_v[i+_nmax]*yflag; sharedmem[threadIdx.x+2*blockDim.x] = massone * _v[i+2*_nmax]*_v[i+2*_nmax]*zflag; sharedmem[threadIdx.x+3*blockDim.x] = massone * _v[i]*_v[i+_nmax]*xflag*yflag; sharedmem[threadIdx.x+4*blockDim.x] = massone * _v[i]*_v[i+2*_nmax]*xflag*zflag; sharedmem[threadIdx.x+5*blockDim.x] = massone * _v[i+_nmax]*_v[i+2*_nmax]*yflag*zflag; } reduceBlock(sharedmem); reduceBlock(&sharedmem[blockDim.x]); reduceBlock(&sharedmem[2*blockDim.x]); reduceBlock(&sharedmem[3*blockDim.x]); reduceBlock(&sharedmem[4*blockDim.x]); reduceBlock(&sharedmem[5*blockDim.x]); ENERGY_FLOAT* buffer=(ENERGY_FLOAT*) _buffer; if(threadIdx.x==0) { buffer[blockIdx.x*gridDim.y+blockIdx.y]=sharedmem[0]; buffer[blockIdx.x*gridDim.y+blockIdx.y+gridDim.x*gridDim.y]=sharedmem[blockDim.x]; buffer[blockIdx.x*gridDim.y+blockIdx.y+2*gridDim.x*gridDim.y]=sharedmem[2*blockDim.x]; buffer[blockIdx.x*gridDim.y+blockIdx.y+3*gridDim.x*gridDim.y]=sharedmem[3*blockDim.x]; buffer[blockIdx.x*gridDim.y+blockIdx.y+4*gridDim.x*gridDim.y]=sharedmem[4*blockDim.x]; buffer[blockIdx.x*gridDim.y+blockIdx.y+5*gridDim.x*gridDim.y]=sharedmem[5*blockDim.x]; } } __global__ void Cuda_ComputeTempPartialCuda_Reduce_Kernel(int n,ENERGY_FLOAT* t) { int i=0; sharedmem[threadIdx.x]=0; ENERGY_FLOAT myforig=0.0; ENERGY_FLOAT* buf=(ENERGY_FLOAT*) _buffer; buf=&buf[blockIdx.x*n]; while(i