/* ---------------------------------------------------------------------- LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator Original Version: http://lammps.sandia.gov, Sandia National Laboratories Steve Plimpton, sjplimp@sandia.gov See the README file in the top-level LAMMPS directory. ----------------------------------------------------------------------- USER-CUDA Package and associated modifications: https://sourceforge.net/projects/lammpscuda/ Christian Trott, christian.trott@tu-ilmenau.de Lars Winterfeld, lars.winterfeld@tu-ilmenau.de Theoretical Physics II, University of Technology Ilmenau, Germany See the README file in the USER-CUDA directory. This software is distributed under the GNU General Public License. ------------------------------------------------------------------------- */ extern __shared__ ENERGY_FLOAT sharedmem[]; static inline __device__ void PairVirialCompute_A_Kernel(int eflag,int vflag,int coulflag=0) { __syncthreads(); ENERGY_FLOAT* shared=sharedmem; if(eflag) { reduceBlock(shared); shared+=blockDim.x; if(coulflag) { reduceBlock(shared); shared+=blockDim.x; } } if(vflag) { reduceBlock(shared + 0 * blockDim.x); reduceBlock(shared + 1 * blockDim.x); reduceBlock(shared + 2 * blockDim.x); reduceBlock(shared + 3 * blockDim.x); reduceBlock(shared + 4 * blockDim.x); reduceBlock(shared + 5 * blockDim.x); } if(threadIdx.x == 0) { shared=sharedmem; ENERGY_FLOAT* buffer = (ENERGY_FLOAT*) _buffer; if(eflag) { buffer[blockIdx.x * gridDim.y + blockIdx.y] = ENERGY_F(0.5)*shared[0]; shared+=blockDim.x; buffer+=gridDim.x * gridDim.y; if(coulflag) { buffer[blockIdx.x * gridDim.y + blockIdx.y] = ENERGY_F(0.5)*shared[0]; shared+=blockDim.x; buffer+=gridDim.x * gridDim.y; } } if(vflag) { buffer[blockIdx.x * gridDim.y + blockIdx.y + 0 * gridDim.x * gridDim.y] = ENERGY_F(0.5)*shared[0 * blockDim.x]; buffer[blockIdx.x * gridDim.y + blockIdx.y + 1 * gridDim.x * gridDim.y] = ENERGY_F(0.5)*shared[1 * blockDim.x]; buffer[blockIdx.x * gridDim.y + blockIdx.y + 2 * gridDim.x * gridDim.y] = ENERGY_F(0.5)*shared[2 * blockDim.x]; buffer[blockIdx.x * gridDim.y + blockIdx.y + 3 * gridDim.x * gridDim.y] = ENERGY_F(0.5)*shared[3 * blockDim.x]; buffer[blockIdx.x * gridDim.y + blockIdx.y + 4 * gridDim.x * gridDim.y] = ENERGY_F(0.5)*shared[4 * blockDim.x]; buffer[blockIdx.x * gridDim.y + blockIdx.y + 5 * gridDim.x * gridDim.y] = ENERGY_F(0.5)*shared[5 * blockDim.x]; } } __syncthreads(); } __global__ void MY_AP(PairVirialCompute_reduce)(int n) { sharedmem[threadIdx.x] = ENERGY_F(0.0); ENERGY_FLOAT sum = ENERGY_F(0.0); ENERGY_FLOAT* buf = (ENERGY_FLOAT*) _buffer; buf = &buf[blockIdx.x * n]; //if(blockIdx.x==2) buf=&buf[n]; for(int i = 0; i < n; i += blockDim.x) { sharedmem[threadIdx.x] = (i + threadIdx.x < n) ? buf[i + threadIdx.x] : ENERGY_F(0.0); __syncthreads(); reduceBlock(sharedmem); if(threadIdx.x == 0) sum += sharedmem[0]; } if(threadIdx.x==0) { if(gridDim.x == 1) //evdwl { _eng_vdwl[0]+=sum; } if(gridDim.x == 2) //evdwl + ecoul only { if(blockIdx.x==0) _eng_vdwl[0]+=sum; else _eng_coul[0]+=sum; } if(gridDim.x == 6) //virial { _virial[blockIdx.x] += sum; } if(gridDim.x == 7) //evdwl+virial { if(blockIdx.x==0) _eng_vdwl[0]+=sum; else _virial[blockIdx.x-1] += sum; } if(gridDim.x == 8) //evdwl+ecoul+virial { if(blockIdx.x==0) _eng_vdwl[0]+=sum; else if(blockIdx.x==1) _eng_coul[0]+=sum; else _virial[blockIdx.x-2] += sum; } } }