/* ---------------------------------------------------------------------- LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator http://lammps.sandia.gov, Sandia National Laboratories Steve Plimpton, sjplimp@sandia.gov Copyright (2003) Sandia Corporation. Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains certain rights in this software. This software is distributed under the GNU General Public License. See the README file in the top-level LAMMPS directory. ------------------------------------------------------------------------- */ /* ---------------------------------------------------------------------- Contributing author: Yongfeng Zhang (INL), yongfeng.zhang@inl.gov ------------------------------------------------------------------------- */ #include #include #include #include #include "pair_coul_wolf.h" #include "atom.h" #include "comm.h" #include "force.h" #include "neighbor.h" #include "neigh_list.h" #include "math_const.h" #include "memory.h" #include "error.h" using namespace LAMMPS_NS; using namespace MathConst; /* ---------------------------------------------------------------------- */ PairCoulWolf::PairCoulWolf(LAMMPS *lmp) : Pair(lmp) {} /* ---------------------------------------------------------------------- */ PairCoulWolf::~PairCoulWolf() { if (copymode) return; if (allocated) { memory->destroy(setflag); memory->destroy(cutsq); } } /* ---------------------------------------------------------------------- */ void PairCoulWolf::compute(int eflag, int vflag) { int i,j,ii,jj,inum,jnum; double qtmp,xtmp,ytmp,ztmp,delx,dely,delz,ecoul,fpair; double rsq,forcecoul,factor_coul; double prefactor; double r; int *ilist,*jlist,*numneigh,**firstneigh; double erfcc,erfcd,v_sh,dvdrr,e_self,e_shift,f_shift,qisq; ecoul = 0.0; if (eflag || vflag) ev_setup(eflag,vflag); else evflag = vflag_fdotr = 0; double **x = atom->x; double **f = atom->f; double *q = atom->q; int nlocal = atom->nlocal; double *special_coul = force->special_coul; int newton_pair = force->newton_pair; double qqrd2e = force->qqrd2e; // self and shifted coulombic energy e_self = v_sh = 0.0; e_shift = erfc(alf*cut_coul)/cut_coul; f_shift = -(e_shift+ 2.0*alf/MY_PIS * exp(-alf*alf*cut_coul*cut_coul)) / cut_coul; inum = list->inum; ilist = list->ilist; numneigh = list->numneigh; firstneigh = list->firstneigh; // loop over neighbors of my atoms for (ii = 0; ii < inum; ii++) { i = ilist[ii]; qtmp = q[i]; xtmp = x[i][0]; ytmp = x[i][1]; ztmp = x[i][2]; jlist = firstneigh[i]; jnum = numneigh[i]; qisq = qtmp*qtmp; e_self = -(e_shift/2.0 + alf/MY_PIS) * qisq*qqrd2e; if (evflag) ev_tally(i,i,nlocal,0,0.0,e_self,0.0,0.0,0.0,0.0); for (jj = 0; jj < jnum; jj++) { j = jlist[jj]; factor_coul = special_coul[sbmask(j)]; j &= NEIGHMASK; delx = xtmp - x[j][0]; dely = ytmp - x[j][1]; delz = ztmp - x[j][2]; rsq = delx*delx + dely*dely + delz*delz; if (rsq < cut_coulsq) { r = sqrt(rsq); prefactor = qqrd2e*qtmp*q[j]/r; erfcc = erfc(alf*r); erfcd = exp(-alf*alf*r*r); v_sh = (erfcc - e_shift*r) * prefactor; dvdrr = (erfcc/rsq + 2.0*alf/MY_PIS * erfcd/r) + f_shift; forcecoul = dvdrr*rsq*prefactor; if (factor_coul < 1.0) forcecoul -= (1.0-factor_coul)*prefactor; fpair = forcecoul / rsq; f[i][0] += delx*fpair; f[i][1] += dely*fpair; f[i][2] += delz*fpair; if (newton_pair || j < nlocal) { f[j][0] -= delx*fpair; f[j][1] -= dely*fpair; f[j][2] -= delz*fpair; } if (eflag) { ecoul = v_sh; if (factor_coul < 1.0) ecoul -= (1.0-factor_coul)*prefactor; } else ecoul = 0.0; if (evflag) ev_tally(i,j,nlocal,newton_pair, 0.0,ecoul,fpair,delx,dely,delz); } } } if (vflag_fdotr) virial_fdotr_compute(); } /* ---------------------------------------------------------------------- allocate all arrays ------------------------------------------------------------------------- */ void PairCoulWolf::allocate() { allocated = 1; int n = atom->ntypes; memory->create(setflag,n+1,n+1,"pair:setflag"); for (int i = 1; i <= n; i++) for (int j = i; j <= n; j++) setflag[i][j] = 0; memory->create(cutsq,n+1,n+1,"pair:cutsq"); } /* ---------------------------------------------------------------------- global settings unlike other pair styles, there are no individual pair settings that these override ------------------------------------------------------------------------- */ void PairCoulWolf::settings(int narg, char **arg) { if (narg != 2) error->all(FLERR,"Illegal pair_style command"); alf = force->numeric(FLERR,arg[0]); cut_coul = force->numeric(FLERR,arg[1]); } /* ---------------------------------------------------------------------- set cutoffs for one or more type pairs, optional ------------------------------------------------------------------------- */ void PairCoulWolf::coeff(int narg, char **arg) { if (narg != 2) error->all(FLERR,"Incorrect args for pair coefficients"); if (!allocated) allocate(); int ilo,ihi,jlo,jhi; force->bounds(arg[0],atom->ntypes,ilo,ihi); force->bounds(arg[1],atom->ntypes,jlo,jhi); int count = 0; for (int i = ilo; i <= ihi; i++) { for (int j = MAX(jlo,i); j <= jhi; j++) { setflag[i][j] = 1; count++; } } if (count == 0) error->all(FLERR,"Incorrect args for pair coefficients"); } /* ---------------------------------------------------------------------- init specific to this pair style ------------------------------------------------------------------------- */ void PairCoulWolf::init_style() { if (!atom->q_flag) error->all(FLERR,"Pair coul/wolf requires atom attribute q"); neighbor->request(this,instance_me); cut_coulsq = cut_coul*cut_coul; } /* ---------------------------------------------------------------------- init for one type pair i,j and corresponding j,i ------------------------------------------------------------------------- */ double PairCoulWolf::init_one(int i, int j) { return cut_coul; } /* ---------------------------------------------------------------------- proc 0 writes to restart file ------------------------------------------------------------------------- */ void PairCoulWolf::write_restart(FILE *fp) { write_restart_settings(fp); int i,j; for (i = 1; i <= atom->ntypes; i++) for (j = i; j <= atom->ntypes; j++) fwrite(&setflag[i][j],sizeof(int),1,fp); } /* ---------------------------------------------------------------------- proc 0 reads from restart file, bcasts ------------------------------------------------------------------------- */ void PairCoulWolf::read_restart(FILE *fp) { read_restart_settings(fp); allocate(); int i,j; int me = comm->me; for (i = 1; i <= atom->ntypes; i++) for (j = i; j <= atom->ntypes; j++) { if (me == 0) fread(&setflag[i][j],sizeof(int),1,fp); MPI_Bcast(&setflag[i][j],1,MPI_INT,0,world); } } /* ---------------------------------------------------------------------- proc 0 writes to restart file ------------------------------------------------------------------------- */ void PairCoulWolf::write_restart_settings(FILE *fp) { fwrite(&alf,sizeof(double),1,fp); fwrite(&cut_coul,sizeof(double),1,fp); fwrite(&offset_flag,sizeof(int),1,fp); fwrite(&mix_flag,sizeof(int),1,fp); } /* ---------------------------------------------------------------------- proc 0 reads from restart file, bcasts ------------------------------------------------------------------------- */ void PairCoulWolf::read_restart_settings(FILE *fp) { if (comm->me == 0) { fread(&alf,sizeof(double),1,fp); fread(&cut_coul,sizeof(double),1,fp); fread(&offset_flag,sizeof(int),1,fp); fread(&mix_flag,sizeof(int),1,fp); } MPI_Bcast(&alf,1,MPI_DOUBLE,0,world); MPI_Bcast(&cut_coul,1,MPI_DOUBLE,0,world); MPI_Bcast(&offset_flag,1,MPI_INT,0,world); MPI_Bcast(&mix_flag,1,MPI_INT,0,world); } /* ---------------------------------------------------------------------- only the pair part is calculated here ------------------------------------------------------------------------- */ double PairCoulWolf::single(int i, int j, int itype, int jtype, double rsq, double factor_coul, double factor_lj, double &fforce) { double r,prefactor; double forcecoul,phicoul; double e_shift,f_shift,dvdrr,erfcc,erfcd; e_shift = erfc(alf*cut_coul) / cut_coul; f_shift = -(e_shift+ 2.0*alf/MY_PIS * exp(-alf*alf*cut_coul*cut_coul)) / cut_coul; if (rsq < cut_coulsq) { r = sqrt(rsq); prefactor = force->qqrd2e * atom->q[i]*atom->q[j]/r; erfcc = erfc(alf*r); erfcd = exp(-alf*alf*r*r); dvdrr = (erfcc/rsq + 2.0*alf/MY_PIS * erfcd/r) + f_shift; forcecoul = dvdrr*rsq*prefactor; if (factor_coul < 1.0) forcecoul -= (1.0-factor_coul)*prefactor; } else forcecoul = 0.0; fforce = forcecoul / rsq; double eng = 0.0; if (rsq < cut_coulsq) { phicoul = prefactor * (erfcc-e_shift*r); if (factor_coul < 1.0) phicoul -= (1.0-factor_coul)*prefactor; eng += phicoul; } return eng; }