/* ---------------------------------------------------------------------- LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator http://lammps.sandia.gov, Sandia National Laboratories Steve Plimpton, sjplimp@sandia.gov Copyright (2003) Sandia Corporation. Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains certain rights in this software. This software is distributed under the GNU General Public License. See the README file in the top-level LAMMPS directory. ------------------------------------------------------------------------- */ /* ---------------------------------------------------------------------- Contributing authors: Mike Brown (ORNL), brownw@ornl.gov ------------------------------------------------------------------------- */ #ifndef CRML_GPU_KERNEL #define CRML_GPU_KERNEL #define MAX_BIO_SHARED_TYPES 128 #ifdef _DOUBLE_DOUBLE #define numtyp double #define numtyp2 double2 #define numtyp4 double4 #define acctyp double #define acctyp4 double4 #endif #ifdef _SINGLE_DOUBLE #define numtyp float #define numtyp2 float2 #define numtyp4 float4 #define acctyp double #define acctyp4 double4 #endif #ifndef numtyp #define numtyp float #define numtyp2 float2 #define numtyp4 float4 #define acctyp float #define acctyp4 float4 #endif #define EWALD_F (numtyp)1.12837917 #define EWALD_P (numtyp)0.3275911 #define A1 (numtyp)0.254829592 #define A2 (numtyp)-0.284496736 #define A3 (numtyp)1.421413741 #define A4 (numtyp)-1.453152027 #define A5 (numtyp)1.061405429 #ifdef NV_KERNEL #include "geryon/ucl_nv_kernel.h" texture pos_tex; texture q_tex; #ifdef _DOUBLE_DOUBLE __inline double4 fetch_pos(const int& i, const double4 *pos) { return pos[i]; } __inline double fetch_q(const int& i, const double *q) { return q[i]; } #else __inline float4 fetch_pos(const int& i, const float4 *pos) { return tex1Dfetch(pos_tex, i); } __inline float fetch_q(const int& i, const float *q) { return tex1Dfetch(q_tex, i); } #endif #else #pragma OPENCL EXTENSION cl_khr_fp64: enable #define GLOBAL_ID_X get_global_id(0) #define THREAD_ID_X get_local_id(0) #define BLOCK_ID_X get_group_id(0) #define BLOCK_SIZE_X get_local_size(0) #define __syncthreads() barrier(CLK_LOCAL_MEM_FENCE) #define __inline inline #define fetch_pos(i,y) x_[i] #define fetch_q(i,y) q_[i] #endif #define SBBITS 30 #define NEIGHMASK 0x3FFFFFFF __inline int sbmask(int j) { return j >> SBBITS & 3; } __kernel void kernel_pair(__global numtyp4 *x_, __global numtyp4 *lj1, const int lj_types, __global numtyp *sp_lj_in, __global int *dev_nbor, __global acctyp4 *ans, __global acctyp *engv, const int eflag, const int vflag, const int inum, const int nall, const int nbor_pitch, __global numtyp *q_, const numtyp cut_coulsq, const numtyp qqrd2e, const numtyp g_ewald, const numtyp denom_lj, const numtyp cut_bothsq, const numtyp cut_ljsq, const numtyp cut_lj_innersq) { // ii indexes the two interacting particles in gi int ii=GLOBAL_ID_X; __local numtyp sp_lj[8]; sp_lj[0]=sp_lj_in[0]; sp_lj[1]=sp_lj_in[1]; sp_lj[2]=sp_lj_in[2]; sp_lj[3]=sp_lj_in[3]; sp_lj[4]=sp_lj_in[4]; sp_lj[5]=sp_lj_in[5]; sp_lj[6]=sp_lj_in[6]; sp_lj[7]=sp_lj_in[7]; if (ii cut_lj_innersq) { switch1 = (cut_ljsq-rsq); numtyp switch2 = (numtyp)12.0*rsq*switch1*(rsq-cut_lj_innersq)/ denom_lj; switch1 *= switch1; switch1 *= (cut_ljsq+(numtyp)2.0*rsq-(numtyp)3.0*cut_lj_innersq)/ denom_lj; switch2 *= r6inv*(lj1[mtype].z*r6inv-lj1[mtype].w); force_lj = force_lj*switch1+switch2; } } else force_lj = (numtyp)0.0; if (rsq < cut_coulsq) { numtyp r = sqrt(rsq); numtyp grij = g_ewald * r; numtyp expm2 = exp(-grij*grij); numtyp t = (numtyp)1.0 / ((numtyp)1.0 + EWALD_P*grij); _erfc = t * (A1+t*(A2+t*(A3+t*(A4+t*A5)))) * expm2; prefactor = qqrd2e * qtmp*fetch_q(j,q_)/r; forcecoul = prefactor * (_erfc + EWALD_F*grij*expm2-factor_coul); } else { forcecoul = (numtyp)0.0; prefactor = (numtyp)0.0; } force = (force_lj + forcecoul) * r2inv; f.x+=delx*force; f.y+=dely*force; f.z+=delz*force; if (eflag>0) { e_coul += prefactor*(_erfc-factor_coul); if (rsq < cut_ljsq) { numtyp e=r6inv*(lj1[mtype].z*r6inv-lj1[mtype].w); if (rsq > cut_lj_innersq) e *= switch1; energy+=factor_lj*e; } } if (vflag>0) { virial[0] += delx*delx*force; virial[1] += dely*dely*force; virial[2] += delz*delz*force; virial[3] += delx*dely*force; virial[4] += delx*delz*force; virial[5] += dely*delz*force; } } } // for nbor // Store answers __global acctyp *ap1=engv+ii; if (eflag>0) { *ap1=energy; ap1+=inum; *ap1=e_coul; ap1+=inum; } if (vflag>0) { for (int i=0; i<6; i++) { *ap1=virial[i]; ap1+=inum; } } ans[ii]=f; } // if ii } __kernel void kernel_pair_fast(__global numtyp4 *x_, __global numtyp2 *ljd_in, __global numtyp* sp_lj_in, __global int *dev_nbor, __global acctyp4 *ans, __global acctyp *engv, const int eflag, const int vflag, const int inum, const int nall, const int nbor_pitch, __global numtyp *q_, const numtyp cut_coulsq, const numtyp qqrd2e, const numtyp g_ewald, const numtyp denom_lj, const numtyp cut_bothsq, const numtyp cut_ljsq, const numtyp cut_lj_innersq) { // ii indexes the two interacting particles in gi int ii=THREAD_ID_X; __local numtyp2 ljd[MAX_BIO_SHARED_TYPES]; __local numtyp sp_lj[8]; if (ii<8) sp_lj[ii]=sp_lj_in[ii]; ljd[ii]=ljd_in[ii]; ljd[ii+64]=ljd_in[ii+64]; ii+=mul24((int)BLOCK_ID_X,(int)BLOCK_SIZE_X); __syncthreads(); if (ii cut_lj_innersq) { switch1 = (cut_ljsq-rsq); numtyp switch2 = (numtyp)12.0*rsq*switch1*(rsq-cut_lj_innersq)/ denom_lj; switch1 *= switch1; switch1 *= (cut_ljsq+(numtyp)2.0*rsq-(numtyp)3.0*cut_lj_innersq)/ denom_lj; switch2 *= lj3-lj4; force_lj = force_lj*switch1+switch2; } } else force_lj = (numtyp)0.0; if (rsq < cut_coulsq) { numtyp r = sqrt(rsq); numtyp grij = g_ewald * r; numtyp expm2 = exp(-grij*grij); numtyp t = (numtyp)1.0 / ((numtyp)1.0 + EWALD_P*grij); _erfc = t * (A1+t*(A2+t*(A3+t*(A4+t*A5)))) * expm2; prefactor = qqrd2e * qtmp*fetch_q(j,q_)/r; forcecoul = prefactor * (_erfc + EWALD_F*grij*expm2-factor_coul); } else { forcecoul = (numtyp)0.0; prefactor = (numtyp)0.0; } force = (force_lj + forcecoul) * r2inv; f.x+=delx*force; f.y+=dely*force; f.z+=delz*force; if (eflag>0) { e_coul += prefactor*(_erfc-factor_coul); if (rsq < cut_ljsq) { numtyp e=lj3-lj4; if (rsq > cut_lj_innersq) e *= switch1; energy+=factor_lj*e; } } if (vflag>0) { virial[0] += delx*delx*force; virial[1] += dely*dely*force; virial[2] += delz*delz*force; virial[3] += delx*dely*force; virial[4] += delx*delz*force; virial[5] += dely*delz*force; } } } // for nbor // Store answers __global acctyp *ap1=engv+ii; if (eflag>0) { *ap1=energy; ap1+=inum; *ap1=e_coul; ap1+=inum; } if (vflag>0) { for (int i=0; i<6; i++) { *ap1=virial[i]; ap1+=inum; } } ans[ii]=f; } // if ii } #endif