/* ---------------------------------------------------------------------- LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator https://www.lammps.org/, Sandia National Laboratories LAMMPS development team: developers@lammps.org Copyright (2003) Sandia Corporation. Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains certain rights in this software. This software is distributed under the GNU General Public License. See the README file in the top-level LAMMPS directory. ------------------------------------------------------------------------- */ #include "compute_omega_chunk.h" #include "atom.h" #include "compute_chunk_atom.h" #include "domain.h" #include "error.h" #include "math_eigen.h" #include "math_extra.h" #include "memory.h" using namespace LAMMPS_NS; static constexpr double EPSILON = 1.0e-6; /* ---------------------------------------------------------------------- */ ComputeOmegaChunk::ComputeOmegaChunk(LAMMPS *lmp, int narg, char **arg) : ComputeChunk(lmp, narg, arg), massproc(nullptr), masstotal(nullptr), com(nullptr), comall(nullptr), inertia(nullptr), inertiaall(nullptr), angmom(nullptr), angmomall(nullptr), omega(nullptr) { if (narg != 4) error->all(FLERR, "Illegal compute omega/chunk command"); array_flag = 1; size_array_cols = 3; size_array_rows = 0; size_array_rows_variable = 1; extarray = 0; ComputeOmegaChunk::init(); ComputeOmegaChunk::allocate(); } /* ---------------------------------------------------------------------- */ ComputeOmegaChunk::~ComputeOmegaChunk() { memory->destroy(massproc); memory->destroy(masstotal); memory->destroy(com); memory->destroy(comall); memory->destroy(angmom); memory->destroy(angmomall); memory->destroy(inertia); memory->destroy(inertiaall); memory->destroy(omega); } /* ---------------------------------------------------------------------- */ void ComputeOmegaChunk::compute_array() { int i, j, m, index; double dx, dy, dz, massone; double unwrap[3]; ComputeChunk::compute_array(); int *ichunk = cchunk->ichunk; if (nchunk > maxchunk) allocate(); size_array_rows = nchunk; // zero local per-chunk values for (i = 0; i < nchunk; i++) { massproc[i] = 0.0; com[i][0] = com[i][1] = com[i][2] = 0.0; for (j = 0; j < 6; j++) inertia[i][j] = 0.0; angmom[i][0] = angmom[i][1] = angmom[i][2] = 0.0; omega[i][0] = omega[i][1] = omega[i][2] = 0.0; } // compute COM for each chunk double **x = atom->x; int *mask = atom->mask; int *type = atom->type; imageint *image = atom->image; double *mass = atom->mass; double *rmass = atom->rmass; int nlocal = atom->nlocal; for (i = 0; i < nlocal; i++) if (mask[i] & groupbit) { index = ichunk[i] - 1; if (index < 0) continue; if (rmass) massone = rmass[i]; else massone = mass[type[i]]; domain->unmap(x[i], image[i], unwrap); massproc[index] += massone; com[index][0] += unwrap[0] * massone; com[index][1] += unwrap[1] * massone; com[index][2] += unwrap[2] * massone; } MPI_Allreduce(massproc, masstotal, nchunk, MPI_DOUBLE, MPI_SUM, world); MPI_Allreduce(&com[0][0], &comall[0][0], 3 * nchunk, MPI_DOUBLE, MPI_SUM, world); for (i = 0; i < nchunk; i++) { if (masstotal[i] > 0.0) { comall[i][0] /= masstotal[i]; comall[i][1] /= masstotal[i]; comall[i][2] /= masstotal[i]; } } // compute inertia tensor for each chunk for (i = 0; i < nlocal; i++) if (mask[i] & groupbit) { index = ichunk[i] - 1; if (index < 0) continue; if (rmass) massone = rmass[i]; else massone = mass[type[i]]; domain->unmap(x[i], image[i], unwrap); dx = unwrap[0] - comall[index][0]; dy = unwrap[1] - comall[index][1]; dz = unwrap[2] - comall[index][2]; inertia[index][0] += massone * (dy * dy + dz * dz); inertia[index][1] += massone * (dx * dx + dz * dz); inertia[index][2] += massone * (dx * dx + dy * dy); inertia[index][3] -= massone * dx * dy; inertia[index][4] -= massone * dy * dz; inertia[index][5] -= massone * dx * dz; } MPI_Allreduce(&inertia[0][0], &inertiaall[0][0], 6 * nchunk, MPI_DOUBLE, MPI_SUM, world); // compute angmom for each chunk double **v = atom->v; for (i = 0; i < nlocal; i++) if (mask[i] & groupbit) { index = ichunk[i] - 1; if (index < 0) continue; domain->unmap(x[i], image[i], unwrap); dx = unwrap[0] - comall[index][0]; dy = unwrap[1] - comall[index][1]; dz = unwrap[2] - comall[index][2]; if (rmass) massone = rmass[i]; else massone = mass[type[i]]; angmom[index][0] += massone * (dy * v[i][2] - dz * v[i][1]); angmom[index][1] += massone * (dz * v[i][0] - dx * v[i][2]); angmom[index][2] += massone * (dx * v[i][1] - dy * v[i][0]); } MPI_Allreduce(&angmom[0][0], &angmomall[0][0], 3 * nchunk, MPI_DOUBLE, MPI_SUM, world); // compute omega for each chunk double determinant, invdeterminant; double idiag[3], ex[3], ey[3], ez[3], cross[3]; double ione[3][3], inverse[3][3], evectors[3][3]; double *iall, *mall; for (m = 0; m < nchunk; m++) { // determinant = triple product of rows of inertia matrix iall = &inertiaall[m][0]; determinant = iall[0] * (iall[1] * iall[2] - iall[4] * iall[4]) + iall[3] * (iall[4] * iall[5] - iall[3] * iall[2]) + iall[5] * (iall[3] * iall[4] - iall[1] * iall[5]); ione[0][0] = iall[0]; ione[1][1] = iall[1]; ione[2][2] = iall[2]; ione[0][1] = ione[1][0] = iall[3]; ione[1][2] = ione[2][1] = iall[4]; ione[0][2] = ione[2][0] = iall[5]; // non-singular I matrix // use L = Iw, inverting I to solve for w if (determinant > EPSILON) { inverse[0][0] = ione[1][1] * ione[2][2] - ione[1][2] * ione[2][1]; inverse[0][1] = -(ione[0][1] * ione[2][2] - ione[0][2] * ione[2][1]); inverse[0][2] = ione[0][1] * ione[1][2] - ione[0][2] * ione[1][1]; inverse[1][0] = -(ione[1][0] * ione[2][2] - ione[1][2] * ione[2][0]); inverse[1][1] = ione[0][0] * ione[2][2] - ione[0][2] * ione[2][0]; inverse[1][2] = -(ione[0][0] * ione[1][2] - ione[0][2] * ione[1][0]); inverse[2][0] = ione[1][0] * ione[2][1] - ione[1][1] * ione[2][0]; inverse[2][1] = -(ione[0][0] * ione[2][1] - ione[0][1] * ione[2][0]); inverse[2][2] = ione[0][0] * ione[1][1] - ione[0][1] * ione[1][0]; invdeterminant = 1.0 / determinant; for (i = 0; i < 3; i++) for (j = 0; j < 3; j++) inverse[i][j] *= invdeterminant; mall = &angmomall[m][0]; omega[m][0] = inverse[0][0] * mall[0] + inverse[0][1] * mall[1] + inverse[0][2] * mall[2]; omega[m][1] = inverse[1][0] * mall[0] + inverse[1][1] * mall[1] + inverse[1][2] * mall[2]; omega[m][2] = inverse[2][0] * mall[0] + inverse[2][1] * mall[1] + inverse[2][2] * mall[2]; // handle each (nearly) singular I matrix // due to 2-atom chunk or linear molecule // use jacobi3() and angmom_to_omega() to calculate valid omega } else { int ierror = MathEigen::jacobi3(ione, idiag, evectors); if (ierror) error->all(FLERR, "Insufficient Jacobi rotations for omega/chunk"); ex[0] = evectors[0][0]; ex[1] = evectors[1][0]; ex[2] = evectors[2][0]; ey[0] = evectors[0][1]; ey[1] = evectors[1][1]; ey[2] = evectors[2][1]; ez[0] = evectors[0][2]; ez[1] = evectors[1][2]; ez[2] = evectors[2][2]; // enforce 3 evectors as a right-handed coordinate system // flip 3rd vector if needed MathExtra::cross3(ex, ey, cross); if (MathExtra::dot3(cross, ez) < 0.0) MathExtra::negate3(ez); // if any principal moment < scaled EPSILON, set to 0.0 double max; max = MAX(idiag[0], idiag[1]); max = MAX(max, idiag[2]); if (idiag[0] < EPSILON * max) idiag[0] = 0.0; if (idiag[1] < EPSILON * max) idiag[1] = 0.0; if (idiag[2] < EPSILON * max) idiag[2] = 0.0; // calculate omega using diagonalized inertia matrix MathExtra::angmom_to_omega(&angmomall[m][0], ex, ey, ez, idiag, &omega[m][0]); } } } /* ---------------------------------------------------------------------- free and reallocate per-chunk arrays ------------------------------------------------------------------------- */ void ComputeOmegaChunk::allocate() { ComputeChunk::allocate(); memory->destroy(massproc); memory->destroy(masstotal); memory->destroy(com); memory->destroy(comall); memory->destroy(inertia); memory->destroy(inertiaall); memory->destroy(angmom); memory->destroy(angmomall); memory->destroy(omega); maxchunk = nchunk; memory->create(massproc, maxchunk, "omega/chunk:massproc"); memory->create(masstotal, maxchunk, "omega/chunk:masstotal"); memory->create(com, maxchunk, 3, "omega/chunk:com"); memory->create(comall, maxchunk, 3, "omega/chunk:comall"); memory->create(inertia, maxchunk, 6, "omega/chunk:inertia"); memory->create(inertiaall, maxchunk, 6, "omega/chunk:inertiaall"); memory->create(angmom, maxchunk, 3, "omega/chunk:angmom"); memory->create(angmomall, maxchunk, 3, "omega/chunk:angmomall"); memory->create(omega, maxchunk, 3, "omega/chunk:omega"); array = omega; } /* ---------------------------------------------------------------------- memory usage of local data ------------------------------------------------------------------------- */ double ComputeOmegaChunk::memory_usage() { double bytes = ComputeChunk::memory_usage(); bytes += (bigint) maxchunk * 2 * sizeof(double); bytes += (double) maxchunk * 2 * 3 * sizeof(double); bytes += (double) maxchunk * 2 * 6 * sizeof(double); bytes += (double) maxchunk * 2 * 3 * sizeof(double); bytes += (double) maxchunk * 3 * sizeof(double); return bytes; }