/* ---------------------------------------------------------------------- LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator http://lammps.sandia.gov, Sandia National Laboratories Steve Plimpton, sjplimp@sandia.gov Copyright (2003) Sandia Corporation. Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains certain rights in this software. This software is distributed under the GNU General Public License. See the README file in the top-level LAMMPS directory. Common Neighbor Parameter as proposed in: Tsuzuki, Branicio, Rino, Comput Phys Comm, 177, 518 (2007) Cite: http://dx.doi.org/10.1063/1.2197987 ------------------------------------------------------------------------- */ /* ---------------------------------------------------------------------- Contributing author: Paulo Branicio (University of Southern California) branicio@usc.edu ------------------------------------------------------------------------- */ #include "compute_cnp_atom.h" #include #include #include #include "atom.h" #include "update.h" #include "modify.h" #include "neighbor.h" #include "neigh_list.h" #include "neigh_request.h" #include "force.h" #include "pair.h" #include "comm.h" #include "memory.h" #include "error.h" using namespace LAMMPS_NS; //define maximum values #define MAXNEAR 24 #define MAXCOMMON 12 enum{NCOMMON}; /* ---------------------------------------------------------------------- */ ComputeCNPAtom::ComputeCNPAtom(LAMMPS *lmp, int narg, char **arg) : Compute(lmp, narg, arg), list(NULL), nearest(NULL), nnearest(NULL), cnpv(NULL) { if (narg != 4) error->all(FLERR,"Illegal compute cnp/atom command"); peratom_flag = 1; size_peratom_cols = 0; double cutoff = force->numeric(FLERR,arg[3]); if (cutoff < 0.0) error->all(FLERR,"Illegal compute cnp/atom command"); cutsq = cutoff*cutoff; // apply check for single type atoms in compute group int lasttype = -1; int n = -1; for (int i=0; i < atom->nlocal; ++i) { if (atom->mask[i] & groupbit) { if (lasttype != atom->type[i]) { lasttype = atom->type[i]; ++n; } } } int all_n = 0; MPI_Allreduce(&n,&all_n,1,MPI_INT,MPI_MAX,world); if (all_n > 0) error->warning(FLERR,"Compute cnp/atom requested on multi-type system"); nmax = 0; } /* ---------------------------------------------------------------------- */ ComputeCNPAtom::~ComputeCNPAtom() { memory->destroy(nearest); memory->destroy(nnearest); memory->destroy(cnpv); } /* ---------------------------------------------------------------------- */ void ComputeCNPAtom::init() { if (force->pair == NULL) error->all(FLERR,"Compute cnp/atom requires a pair style be defined"); if (sqrt(cutsq) > force->pair->cutforce) error->all(FLERR,"Compute cnp/atom cutoff is longer than pairwise cutoff"); if (2.0*sqrt(cutsq) > force->pair->cutforce + neighbor->skin && comm->me == 0) error->warning(FLERR,"Compute cnp/atom cutoff may be too large to find " "ghost atom neighbors"); int count = 0; for (int i = 0; i < modify->ncompute; i++) if (strcmp(modify->compute[i]->style,"cnp/atom") == 0) count++; if (count > 1 && comm->me == 0) error->warning(FLERR,"More than one compute cnp/atom defined"); // need an occasional full neighbor list int irequest = neighbor->request(this,instance_me); neighbor->requests[irequest]->pair = 0; neighbor->requests[irequest]->compute = 1; neighbor->requests[irequest]->half = 0; neighbor->requests[irequest]->full = 1; neighbor->requests[irequest]->occasional = 1; } /* ---------------------------------------------------------------------- */ void ComputeCNPAtom::init_list(int /*id*/, NeighList *ptr) { list = ptr; } /* ---------------------------------------------------------------------- */ void ComputeCNPAtom::compute_peratom() { int i,j,k,ii,jj,kk,m,n,inum,jnum,inear,jnear; int firstflag,ncommon; int *ilist,*jlist,*numneigh,**firstneigh; int onenearest[MAXNEAR]; int common[MAXCOMMON]; double xtmp,ytmp,ztmp,delx,dely,delz,rsq; double xjtmp,yjtmp,zjtmp,rjkx,rjky,rjkz; invoked_peratom = update->ntimestep; // grow arrays if necessary if (atom->nmax > nmax) { memory->destroy(nearest); memory->destroy(nnearest); memory->destroy(cnpv); nmax = atom->nmax; memory->create(nearest,nmax,MAXNEAR,"cnp:nearest"); memory->create(nnearest,nmax,"cnp:nnearest"); memory->create(cnpv,nmax,"cnp:cnp_cnpv"); vector_atom = cnpv; } // invoke full neighbor list (will copy or build if necessary) neighbor->build_one(list); inum = list->inum; ilist = list->ilist; numneigh = list->numneigh; firstneigh = list->firstneigh; // find the neigbors of each atom within cutoff using full neighbor list // nearest[] = atom indices of nearest neighbors, up to MAXNEAR // do this for all atoms, not just compute group // since CNP calculation requires neighbors of neighbors double **x = atom->x; int *mask = atom->mask; int nlocal = atom->nlocal; int nerror = 0; for (ii = 0; ii < inum; ii++) { i = ilist[ii]; xtmp = x[i][0]; ytmp = x[i][1]; ztmp = x[i][2]; jlist = firstneigh[i]; jnum = numneigh[i]; n = 0; for (jj = 0; jj < jnum; jj++) { j = jlist[jj]; j &= NEIGHMASK; delx = xtmp - x[j][0]; dely = ytmp - x[j][1]; delz = ztmp - x[j][2]; rsq = delx*delx + dely*dely + delz*delz; if (rsq < cutsq) { if (n < MAXNEAR) nearest[i][n++] = j; else { nerror++; break; } } } nnearest[i] = n; } // warning message int nerrorall; MPI_Allreduce(&nerror,&nerrorall,1,MPI_INT,MPI_SUM,world); if (nerrorall && comm->me == 0) { char str[128]; sprintf(str,"Too many neighbors in CNP for %d atoms",nerrorall); error->warning(FLERR,str,0); } // compute CNP value for each atom in group // only performed if # of nearest neighbors = 12 or 14 (fcc,hcp) nerror = 0; for (ii = 0; ii < inum; ii++) { i = ilist[ii]; xtmp = x[i][0]; ytmp = x[i][1]; ztmp = x[i][2]; // reset cnpv cnpv[i] = 0.0; // skip computation of cnpv for atoms outside the compute group if (!(mask[i] & groupbit)) continue; // loop over nearest neighbors of I to build cnp data structure // cnp[k][NCOMMON] = # of common neighbors of I with each of its neighbors for (m = 0; m < nnearest[i]; m++) { j = nearest[i][m]; xjtmp = x[j][0]; yjtmp = x[j][1]; zjtmp = x[j][2]; // common = list of neighbors common to atom I and atom J // if J is an owned atom, use its near neighbor list to find them // if J is a ghost atom, use full neighbor list of I to find them // in latter case, must exclude J from I's neighbor list // find common neighbors of i and j using near neighbor list if (j < nlocal) { firstflag = 1; ncommon = 0; for (inear = 0; inear < nnearest[i]; inear++) for (jnear = 0; jnear < nnearest[j]; jnear++) if (nearest[i][inear] == nearest[j][jnear]) { if (ncommon < MAXCOMMON) common[ncommon++] = nearest[i][inear]; else if (firstflag) { nerror++; firstflag = 0; } } // find common neighbors of i and j using full neighbor list } else { jlist = firstneigh[i]; jnum = numneigh[i]; n = 0; for (kk = 0; kk < jnum; kk++) { k = jlist[kk]; k &= NEIGHMASK; if (k == j) continue; delx = xjtmp - x[k][0]; dely = yjtmp - x[k][1]; delz = zjtmp - x[k][2]; rsq = delx*delx + dely*dely + delz*delz; if (rsq < cutsq) { if (n < MAXNEAR) onenearest[n++] = k; else break; } } firstflag = 1; ncommon = 0; for (inear = 0; inear < nnearest[i]; inear++) for (jnear = 0; (jnear < n) && (n < MAXNEAR); jnear++) if (nearest[i][inear] == onenearest[jnear]) { if (ncommon < MAXCOMMON) common[ncommon++] = nearest[i][inear]; else if (firstflag) { nerror++; firstflag = 0; } } } // Calculate and update sum |Rik+Rjk|ˆ2 rjkx = 0.0; rjky = 0.0; rjkz = 0.0; for (kk = 0; kk < ncommon; kk++) { k = common[kk]; rjkx += 2.0*x[k][0] - xjtmp - xtmp; rjky += 2.0*x[k][1] - yjtmp - ytmp; rjkz += 2.0*x[k][2] - zjtmp - ztmp; } // update cnpv with summed (valuejk) cnpv[i] += rjkx*rjkx + rjky*rjky + rjkz*rjkz; // end of loop over j atoms } // normalize cnp by the number of nearest neighbors cnpv[i] = cnpv[i] / nnearest[i]; // end of loop over i atoms } // warning message MPI_Allreduce(&nerror,&nerrorall,1,MPI_INT,MPI_SUM,world); if (nerrorall && comm->me == 0) { char str[128]; sprintf(str,"Too many common neighbors in CNP %d times",nerrorall); error->warning(FLERR,str); } } /* ---------------------------------------------------------------------- memory usage of local atom-based array ------------------------------------------------------------------------- */ double ComputeCNPAtom::memory_usage() { double bytes = nmax * sizeof(int); bytes += nmax * MAXNEAR * sizeof(int); bytes += nmax * sizeof(double); return bytes; }