// clang-format off /* ---------------------------------------------------------------------- LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator https://www.lammps.org/, Sandia National Laboratories Steve Plimpton, sjplimp@sandia.gov Copyright (2003) Sandia Corporation. Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains certain rights in this software. This software is distributed under the GNU General Public License. See the README file in the top-level LAMMPS directory. ------------------------------------------------------------------------- */ #include "compute_snap.h" #include "sna.h" #include "atom.h" #include "update.h" #include "modify.h" #include "neighbor.h" #include "neigh_list.h" #include "force.h" #include "pair.h" #include "comm.h" #include "memory.h" #include "error.h" #include using namespace LAMMPS_NS; enum{SCALAR,VECTOR,ARRAY}; #define SNAPCOMPUTENAME "snap" ComputeSnap::ComputeSnap(LAMMPS *lmp, int narg, char **arg) : Compute(lmp, narg, arg), cutsq(nullptr), list(nullptr), snap(nullptr), snapall(nullptr), snap_peratom(nullptr), radelem(nullptr), wjelem(nullptr), sinnerelem(nullptr), dinnerelem(nullptr), snaptr(nullptr) { array_flag = 1; extarray = 0; // code common to all SNAP computes double rfac0, rmin0; int twojmax, switchflag, bzeroflag, bnormflag, wselfallflag; int ntypes = atom->ntypes; int nargmin = 6 + 2 * ntypes; if (narg < nargmin) error->all(FLERR, "Illegal compute ", SNAPCOMPUTENAME, " command"); // default values rmin0 = 0.0; switchflag = 1; bzeroflag = 1; quadraticflag = 0; chemflag = 0; bnormflag = 0; wselfallflag = 0; switchinnerflag = 0; nelements = 1; // process required arguments memory->create(radelem, ntypes + 1, "snap:radelem"); // offset by 1 to match up with types memory->create(wjelem, ntypes + 1, "snap:wjelem"); rcutfac = utils::numeric(FLERR, arg[3], false, lmp); rfac0 = utils::numeric(FLERR, arg[4], false, lmp); twojmax = utils::inumeric(FLERR, arg[5], false, lmp); for (int i = 0; i < ntypes; i++) radelem[i + 1] = utils::numeric(FLERR, arg[6 + i], false, lmp); for (int i = 0; i < ntypes; i++) wjelem[i + 1] = utils::numeric(FLERR, arg[6 + ntypes + i], false, lmp); // construct cutsq double cut; cutmax = 0.0; memory->create(cutsq, ntypes + 1, ntypes + 1, "snap:cutsq"); for (int i = 1; i <= ntypes; i++) { cut = 2.0 * radelem[i] * rcutfac; if (cut > cutmax) cutmax = cut; cutsq[i][i] = cut * cut; for (int j = i + 1; j <= ntypes; j++) { cut = (radelem[i] + radelem[j]) * rcutfac; cutsq[i][j] = cutsq[j][i] = cut * cut; } } // set local input checks int sinnerflag = 0; int dinnerflag = 0; // process optional args int iarg = nargmin; while (iarg < narg) { if (strcmp(arg[iarg], "rmin0") == 0) { if (iarg + 2 > narg) error->all(FLERR, "Illegal compute ", SNAPCOMPUTENAME, " command"); rmin0 = utils::numeric(FLERR, arg[iarg + 1], false, lmp); iarg += 2; } else if (strcmp(arg[iarg], "switchflag") == 0) { if (iarg + 2 > narg) error->all(FLERR, "Illegal compute ", SNAPCOMPUTENAME, " command"); switchflag = utils::inumeric(FLERR, arg[iarg + 1], false, lmp); iarg += 2; } else if (strcmp(arg[iarg], "bzeroflag") == 0) { if (iarg + 2 > narg) error->all(FLERR, "Illegal compute ", SNAPCOMPUTENAME, " command"); bzeroflag = utils::inumeric(FLERR, arg[iarg + 1], false, lmp); iarg += 2; } else if (strcmp(arg[iarg], "quadraticflag") == 0) { if (iarg + 2 > narg) error->all(FLERR, "Illegal compute ", SNAPCOMPUTENAME, " command"); quadraticflag = utils::inumeric(FLERR, arg[iarg + 1], false, lmp); iarg += 2; } else if (strcmp(arg[iarg], "chem") == 0) { if (iarg + 2 > narg) error->all(FLERR, "Illegal compute ", SNAPCOMPUTENAME, " command"); chemflag = 1; memory->create(map, ntypes + 1, "compute_sna_grid:map"); nelements = utils::inumeric(FLERR, arg[iarg + 1], false, lmp); for (int i = 0; i < ntypes; i++) { int jelem = utils::inumeric(FLERR, arg[iarg + 2 + i], false, lmp); if (jelem < 0 || jelem >= nelements) error->all(FLERR, "Illegal compute ", SNAPCOMPUTENAME, " command"); map[i + 1] = jelem; } iarg += 2 + ntypes; } else if (strcmp(arg[iarg], "bnormflag") == 0) { if (iarg + 2 > narg) error->all(FLERR, "Illegal compute ", SNAPCOMPUTENAME, " command"); bnormflag = utils::inumeric(FLERR, arg[iarg + 1], false, lmp); iarg += 2; } else if (strcmp(arg[iarg], "wselfallflag") == 0) { if (iarg + 2 > narg) error->all(FLERR, "Illegal compute ", SNAPCOMPUTENAME, " command"); wselfallflag = utils::inumeric(FLERR, arg[iarg + 1], false, lmp); iarg += 2; } else if (strcmp(arg[iarg], "switchinnerflag") == 0) { if (iarg + 2 > narg) error->all(FLERR, "Illegal compute ", SNAPCOMPUTENAME, " command"); switchinnerflag = utils::inumeric(FLERR, arg[iarg + 1], false, lmp); iarg += 2; } else if (strcmp(arg[iarg], "sinner") == 0) { iarg++; if (iarg + ntypes > narg) error->all(FLERR, "Illegal compute ", SNAPCOMPUTENAME, " command"); memory->create(sinnerelem, ntypes + 1, "snap:sinnerelem"); for (int i = 0; i < ntypes; i++) sinnerelem[i + 1] = utils::numeric(FLERR, arg[iarg + i], false, lmp); sinnerflag = 1; iarg += ntypes; } else if (strcmp(arg[iarg], "dinner") == 0) { iarg++; if (iarg + ntypes > narg) error->all(FLERR, "Illegal compute ", SNAPCOMPUTENAME, " command"); memory->create(dinnerelem, ntypes + 1, "snap:dinnerelem"); for (int i = 0; i < ntypes; i++) dinnerelem[i + 1] = utils::numeric(FLERR, arg[iarg + i], false, lmp); dinnerflag = 1; iarg += ntypes; } else error->all(FLERR, "Illegal compute ", SNAPCOMPUTENAME, " command"); } if (switchinnerflag && !(sinnerflag && dinnerflag)) error->all( FLERR, "Illegal compute ", SNAPCOMPUTENAME, " command: switchinnerflag = 1, missing sinner/dinner keyword"); if (!switchinnerflag && (sinnerflag || dinnerflag)) error->all( FLERR, "Illegal compute ", SNAPCOMPUTENAME, " command: switchinnerflag = 0, unexpected sinner/dinner keyword"); snaptr = new SNA(lmp, rfac0, twojmax, rmin0, switchflag, bzeroflag, chemflag, bnormflag, wselfallflag, nelements, switchinnerflag); ncoeff = snaptr->ncoeff; nvalues = ncoeff; if (quadraticflag) nvalues += (ncoeff * (ncoeff + 1)) / 2; // end code common to all SNAP computes ndims_force = 3; ndims_virial = 6; yoffset = nvalues; zoffset = 2*nvalues; natoms = atom->natoms; bik_rows = 1; if (bikflag) bik_rows = natoms; size_array_rows = bik_rows+ndims_force*natoms+ndims_virial; size_array_cols = nvalues*atom->ntypes+1; lastcol = size_array_cols-1; ndims_peratom = ndims_force; size_peratom = ndims_peratom*nvalues*atom->ntypes; nmax = 0; } /* ---------------------------------------------------------------------- */ ComputeSnap::~ComputeSnap() { memory->destroy(snap); memory->destroy(snapall); memory->destroy(snap_peratom); memory->destroy(radelem); memory->destroy(wjelem); memory->destroy(cutsq); delete snaptr; if (chemflag) memory->destroy(map); if (switchinnerflag) { memory->destroy(sinnerelem); memory->destroy(dinnerelem); } } /* ---------------------------------------------------------------------- */ void ComputeSnap::init() { if (force->pair == nullptr) error->all(FLERR,"Compute snap requires a pair style be defined"); if (cutmax > force->pair->cutforce) error->all(FLERR,"Compute snap cutoff is longer than pairwise cutoff"); // need an occasional full neighbor list neighbor->add_request(this, NeighConst::REQ_FULL | NeighConst::REQ_OCCASIONAL); if (modify->get_compute_by_style("snap").size() > 1 && comm->me == 0) error->warning(FLERR,"More than one compute snap"); snaptr->init(); // allocate memory for global array memory->create(snap,size_array_rows,size_array_cols, "snap:snap"); memory->create(snapall,size_array_rows,size_array_cols, "snap:snapall"); array = snapall; // find compute for reference energy std::string id_pe = std::string("thermo_pe"); int ipe = modify->find_compute(id_pe); if (ipe == -1) error->all(FLERR,"compute thermo_pe does not exist."); c_pe = modify->compute[ipe]; // add compute for reference virial tensor std::string id_virial = std::string("snap_press"); std::string pcmd = id_virial + " all pressure NULL virial"; modify->add_compute(pcmd); int ivirial = modify->find_compute(id_virial); if (ivirial == -1) error->all(FLERR,"compute snap_press does not exist."); c_virial = modify->compute[ivirial]; } /* ---------------------------------------------------------------------- */ void ComputeSnap::init_list(int /*id*/, NeighList *ptr) { list = ptr; } /* ---------------------------------------------------------------------- */ void ComputeSnap::compute_array() { int ntotal = atom->nlocal + atom->nghost; invoked_array = update->ntimestep; // grow snap_peratom array if necessary if (atom->nmax > nmax) { memory->destroy(snap_peratom); nmax = atom->nmax; memory->create(snap_peratom,nmax,size_peratom, "snap:snap_peratom"); } // clear global array for (int irow = 0; irow < size_array_rows; irow++) for (int icoeff = 0; icoeff < size_array_cols; icoeff++) snap[irow][icoeff] = 0.0; // clear local peratom array for (int i = 0; i < ntotal; i++) for (int icoeff = 0; icoeff < size_peratom; icoeff++) { snap_peratom[i][icoeff] = 0.0; } // invoke full neighbor list (will copy or build if necessary) neighbor->build_one(list); const int inum = list->inum; const int* const ilist = list->ilist; const int* const numneigh = list->numneigh; int** const firstneigh = list->firstneigh; int * const type = atom->type; // compute sna derivatives for each atom in group // use full neighbor list to count atoms less than cutoff double** const x = atom->x; const int* const mask = atom->mask; for (int ii = 0; ii < inum; ii++) { int irow = 0; if (bikflag) irow = atom->tag[ilist[ii] & NEIGHMASK]-1; const int i = ilist[ii]; if (mask[i] & groupbit) { const double xtmp = x[i][0]; const double ytmp = x[i][1]; const double ztmp = x[i][2]; const int itype = type[i]; int ielem = 0; if (chemflag) ielem = map[itype]; const double radi = radelem[itype]; const int* const jlist = firstneigh[i]; const int jnum = numneigh[i]; const int typeoffset_local = ndims_peratom*nvalues*(itype-1); const int typeoffset_global = nvalues*(itype-1); // insure rij, inside, and typej are of size jnum snaptr->grow_rij(jnum); // rij[][3] = displacements between atom I and those neighbors // inside = indices of neighbors of I within cutoff // typej = types of neighbors of I within cutoff // note Rij sign convention => dU/dRij = dU/dRj = -dU/dRi int ninside = 0; for (int jj = 0; jj < jnum; jj++) { int j = jlist[jj]; j &= NEIGHMASK; const double delx = x[j][0] - xtmp; const double dely = x[j][1] - ytmp; const double delz = x[j][2] - ztmp; const double rsq = delx*delx + dely*dely + delz*delz; int jtype = type[j]; int jelem = 0; if (chemflag) jelem = map[jtype]; if (rsq < cutsq[itype][jtype]&&rsq>1e-20) { snaptr->rij[ninside][0] = delx; snaptr->rij[ninside][1] = dely; snaptr->rij[ninside][2] = delz; snaptr->inside[ninside] = j; snaptr->wj[ninside] = wjelem[jtype]; snaptr->rcutij[ninside] = (radi+radelem[jtype])*rcutfac; if (switchinnerflag) { snaptr->sinnerij[ninside] = 0.5*(sinnerelem[itype]+sinnerelem[jtype]); snaptr->dinnerij[ninside] = 0.5*(dinnerelem[itype]+dinnerelem[jtype]); } if (chemflag) snaptr->element[ninside] = jelem; ninside++; } } snaptr->compute_ui(ninside, ielem); snaptr->compute_zi(); snaptr->compute_bi(ielem); for (int jj = 0; jj < ninside; jj++) { const int j = snaptr->inside[jj]; snaptr->compute_duidrj(jj); snaptr->compute_dbidrj(); // Accumulate dBi/dRi, -dBi/dRj double *snadi = snap_peratom[i]+typeoffset_local; double *snadj = snap_peratom[j]+typeoffset_local; for (int icoeff = 0; icoeff < ncoeff; icoeff++) { snadi[icoeff] += snaptr->dblist[icoeff][0]; snadi[icoeff+yoffset] += snaptr->dblist[icoeff][1]; snadi[icoeff+zoffset] += snaptr->dblist[icoeff][2]; snadj[icoeff] -= snaptr->dblist[icoeff][0]; snadj[icoeff+yoffset] -= snaptr->dblist[icoeff][1]; snadj[icoeff+zoffset] -= snaptr->dblist[icoeff][2]; } if (quadraticflag) { const int quadraticoffset = ncoeff; snadi += quadraticoffset; snadj += quadraticoffset; int ncount = 0; for (int icoeff = 0; icoeff < ncoeff; icoeff++) { double bi = snaptr->blist[icoeff]; double bix = snaptr->dblist[icoeff][0]; double biy = snaptr->dblist[icoeff][1]; double biz = snaptr->dblist[icoeff][2]; // diagonal elements of quadratic matrix double dbxtmp = bi*bix; double dbytmp = bi*biy; double dbztmp = bi*biz; snadi[ncount] += dbxtmp; snadi[ncount+yoffset] += dbytmp; snadi[ncount+zoffset] += dbztmp; snadj[ncount] -= dbxtmp; snadj[ncount+yoffset] -= dbytmp; snadj[ncount+zoffset] -= dbztmp; ncount++; // upper-triangular elements of quadratic matrix for (int jcoeff = icoeff+1; jcoeff < ncoeff; jcoeff++) { double dbxtmp = bi*snaptr->dblist[jcoeff][0] + bix*snaptr->blist[jcoeff]; double dbytmp = bi*snaptr->dblist[jcoeff][1] + biy*snaptr->blist[jcoeff]; double dbztmp = bi*snaptr->dblist[jcoeff][2] + biz*snaptr->blist[jcoeff]; snadi[ncount] += dbxtmp; snadi[ncount+yoffset] += dbytmp; snadi[ncount+zoffset] += dbztmp; snadj[ncount] -= dbxtmp; snadj[ncount+yoffset] -= dbytmp; snadj[ncount+zoffset] -= dbztmp; ncount++; } } } } // Accumulate Bi // linear contributions int k = typeoffset_global; for (int icoeff = 0; icoeff < ncoeff; icoeff++) snap[irow][k++] += snaptr->blist[icoeff]; // quadratic contributions if (quadraticflag) { for (int icoeff = 0; icoeff < ncoeff; icoeff++) { double bveci = snaptr->blist[icoeff]; snap[irow][k++] += 0.5*bveci*bveci; for (int jcoeff = icoeff+1; jcoeff < ncoeff; jcoeff++) { double bvecj = snaptr->blist[jcoeff]; snap[irow][k++] += bveci*bvecj; } } } } } // accumulate bispectrum force contributions to global array for (int itype = 0; itype < atom->ntypes; itype++) { const int typeoffset_local = ndims_peratom*nvalues*itype; const int typeoffset_global = nvalues*itype; for (int icoeff = 0; icoeff < nvalues; icoeff++) { for (int i = 0; i < ntotal; i++) { double *snadi = snap_peratom[i]+typeoffset_local; int iglobal = atom->tag[i]; int irow = 3*(iglobal-1)+bik_rows; snap[irow++][icoeff+typeoffset_global] += snadi[icoeff]; snap[irow++][icoeff+typeoffset_global] += snadi[icoeff+yoffset]; snap[irow][icoeff+typeoffset_global] += snadi[icoeff+zoffset]; } } } // accumulate forces to global array for (int i = 0; i < atom->nlocal; i++) { int iglobal = atom->tag[i]; int irow = 3*(iglobal-1)+bik_rows; snap[irow++][lastcol] = atom->f[i][0]; snap[irow++][lastcol] = atom->f[i][1]; snap[irow][lastcol] = atom->f[i][2]; } // accumulate bispectrum virial contributions to global array dbdotr_compute(); // sum up over all processes MPI_Allreduce(&snap[0][0],&snapall[0][0],size_array_rows*size_array_cols,MPI_DOUBLE,MPI_SUM,world); // assign energy to last column for (int i = 0; i < bik_rows; i++) snapall[i][lastcol] = 0; int irow = 0; double reference_energy = c_pe->compute_scalar(); snapall[irow][lastcol] = reference_energy; // assign virial stress to last column // switch to Voigt notation c_virial->compute_vector(); irow += 3*natoms+bik_rows; snapall[irow++][lastcol] = c_virial->vector[0]; snapall[irow++][lastcol] = c_virial->vector[1]; snapall[irow++][lastcol] = c_virial->vector[2]; snapall[irow++][lastcol] = c_virial->vector[5]; snapall[irow++][lastcol] = c_virial->vector[4]; snapall[irow][lastcol] = c_virial->vector[3]; } /* ---------------------------------------------------------------------- compute global virial contributions via summing r_i.dB^j/dr_i over own & ghost atoms ------------------------------------------------------------------------- */ void ComputeSnap::dbdotr_compute() { double **x = atom->x; int irow0 = bik_rows+ndims_force*natoms; // sum over bispectrum contributions to forces // on all particles including ghosts int nall = atom->nlocal + atom->nghost; for (int i = 0; i < nall; i++) for (int itype = 0; itype < atom->ntypes; itype++) { const int typeoffset_local = ndims_peratom*nvalues*itype; const int typeoffset_global = nvalues*itype; double *snadi = snap_peratom[i]+typeoffset_local; for (int icoeff = 0; icoeff < nvalues; icoeff++) { double dbdx = snadi[icoeff]; double dbdy = snadi[icoeff+yoffset]; double dbdz = snadi[icoeff+zoffset]; int irow = irow0; snap[irow++][icoeff+typeoffset_global] += dbdx*x[i][0]; snap[irow++][icoeff+typeoffset_global] += dbdy*x[i][1]; snap[irow++][icoeff+typeoffset_global] += dbdz*x[i][2]; snap[irow++][icoeff+typeoffset_global] += dbdz*x[i][1]; snap[irow++][icoeff+typeoffset_global] += dbdz*x[i][0]; snap[irow][icoeff+typeoffset_global] += dbdy*x[i][0]; } } } /* ---------------------------------------------------------------------- memory usage ------------------------------------------------------------------------- */ double ComputeSnap::memory_usage() { double bytes = (double)size_array_rows*size_array_cols * sizeof(double); // snap bytes += (double)size_array_rows*size_array_cols * sizeof(double); // snapall bytes += (double)nmax*size_peratom * sizeof(double); // snap_peratom bytes += snaptr->memory_usage(); // SNA object int n = atom->ntypes+1; bytes += (double)n*sizeof(int); // map return bytes; }