/* Copyright (c) 2014, NVIDIA Corporation All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #ifndef TEST_SYNCHRONIC_HPP #define TEST_SYNCHRONIC_HPP #include #include namespace Test { template struct dumb_mutex { dumb_mutex () : locked(0) { } void lock() { while(1) { bool state = false; if (locked.compare_exchange_weak(state,true,std::memory_order_acquire)) { break; } while (locked.load(std::memory_order_relaxed)) { if (!truly) { Kokkos::Impl::portable_yield(); } } } } void unlock() { locked.store(false,std::memory_order_release); } private : std::atomic locked; }; #ifdef WIN32 #include #include #include struct srw_mutex { srw_mutex () { InitializeSRWLock(&_lock); } void lock() { AcquireSRWLockExclusive(&_lock); } void unlock() { ReleaseSRWLockExclusive(&_lock); } private : SRWLOCK _lock; }; #endif struct ttas_mutex { ttas_mutex() : locked(false) { } ttas_mutex(const ttas_mutex&) = delete; ttas_mutex& operator=(const ttas_mutex&) = delete; void lock() { for(int i = 0;; ++i) { bool state = false; if(locked.compare_exchange_weak(state,true,std::memory_order_relaxed,Kokkos::Impl::notify_none)) break; locked.expect_update(true); } std::atomic_thread_fence(std::memory_order_acquire); } void unlock() { locked.store(false,std::memory_order_release); } private : Kokkos::Impl::synchronic locked; }; struct ticket_mutex { ticket_mutex() : active(0), queue(0) { } ticket_mutex(const ticket_mutex&) = delete; ticket_mutex& operator=(const ticket_mutex&) = delete; void lock() { int const me = queue.fetch_add(1, std::memory_order_relaxed); while(me != active.load_when_equal(me, std::memory_order_acquire)) ; } void unlock() { active.fetch_add(1,std::memory_order_release); } private : Kokkos::Impl::synchronic active; std::atomic queue; }; struct mcs_mutex { mcs_mutex() : head(nullptr) { } mcs_mutex(const mcs_mutex&) = delete; mcs_mutex& operator=(const mcs_mutex&) = delete; struct unique_lock { unique_lock(mcs_mutex & arg_m) : m(arg_m), next(nullptr), ready(false) { unique_lock * const h = m.head.exchange(this,std::memory_order_acquire); if(__builtin_expect(h != nullptr,0)) { h->next.store(this,std::memory_order_seq_cst,Kokkos::Impl::notify_one); while(!ready.load_when_not_equal(false,std::memory_order_acquire)) ; } } unique_lock(const unique_lock&) = delete; unique_lock& operator=(const unique_lock&) = delete; ~unique_lock() { unique_lock * h = this; if(__builtin_expect(!m.head.compare_exchange_strong(h,nullptr,std::memory_order_release, std::memory_order_relaxed),0)) { unique_lock * n = next.load(std::memory_order_relaxed); while(!n) n = next.load_when_not_equal(n,std::memory_order_relaxed); n->ready.store(true,std::memory_order_release,Kokkos::Impl::notify_one); } } private: mcs_mutex & m; Kokkos::Impl::synchronic next; Kokkos::Impl::synchronic ready; }; private : std::atomic head; }; } namespace std { template<> struct unique_lock : Test::mcs_mutex::unique_lock { unique_lock(Test::mcs_mutex & arg_m) : Test::mcs_mutex::unique_lock(arg_m) { } unique_lock(const unique_lock&) = delete; unique_lock& operator=(const unique_lock&) = delete; }; } /* #include */ #include namespace Test { //------------------------------------- // MersenneTwister //------------------------------------- #define MT_IA 397 #define MT_LEN 624 class MersenneTwister { volatile unsigned long m_buffer[MT_LEN][64/sizeof(unsigned long)]; volatile int m_index; public: MersenneTwister() { for (int i = 0; i < MT_LEN; i++) m_buffer[i][0] = rand(); m_index = 0; for (int i = 0; i < MT_LEN * 100; i++) integer(); } unsigned long integer() { // Indices int i = m_index; int i2 = m_index + 1; if (i2 >= MT_LEN) i2 = 0; // wrap-around int j = m_index + MT_IA; if (j >= MT_LEN) j -= MT_LEN; // wrap-around // Twist unsigned long s = (m_buffer[i][0] & 0x80000000) | (m_buffer[i2][0] & 0x7fffffff); unsigned long r = m_buffer[j][0] ^ (s >> 1) ^ ((s & 1) * 0x9908B0DF); m_buffer[m_index][0] = r; m_index = i2; // Swizzle r ^= (r >> 11); r ^= (r << 7) & 0x9d2c5680UL; r ^= (r << 15) & 0xefc60000UL; r ^= (r >> 18); return r; } float poissonInterval(float ooLambda) { return -logf(1.0f - integer() * 2.3283e-10f) * ooLambda; } }; } // namespace Test #endif //TEST_HPP