/* ---------------------------------------------------------------------- LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator https://lammps.sandia.gov/, Sandia National Laboratories Steve Plimpton, sjplimp@sandia.gov Copyright (2003) Sandia Corporation. Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains certain rights in this software. This software is distributed under the GNU General Public License. See the README file in the top-level LAMMPS directory. ------------------------------------------------------------------------- */ /* ---------------------------------------------------------------------- Contributing author: Mike Brown (SNL) ------------------------------------------------------------------------- */ #include "fix_nh_sphere.h" #include "atom.h" #include "domain.h" #include "error.h" #include "force.h" #include "math_extra.h" #include "math_vector.h" #include #include using namespace LAMMPS_NS; using namespace FixConst; using namespace MathExtra; /* ---------------------------------------------------------------------- */ FixNHSphere::FixNHSphere(LAMMPS *lmp, int narg, char **arg) : FixNH(lmp, narg, arg) { if (!atom->sphere_flag) error->all(FLERR,"Fix nvt/nph/npt sphere requires atom style sphere"); // inertia = moment of inertia prefactor for sphere or disc inertia = 0.4; int iarg = 3; while (iarg < narg) { if (strcmp(arg[iarg],"disc") == 0){ inertia = 0.5; if (domain->dimension != 2) error->all(FLERR, "Fix nvt/nph/npt sphere disc option requires 2d simulation"); } iarg++; } } /* ---------------------------------------------------------------------- */ void FixNHSphere::init() { // check that all particles are finite-size // no point particles allowed double *radius = atom->radius; int *mask = atom->mask; int nlocal = atom->nlocal; for (int i = 0; i < nlocal; i++) if (mask[i] & groupbit) if (radius[i] == 0.0) error->one(FLERR,"Fix nvt/npt/nph/sphere require extended particles"); FixNH::init(); } /* ---------------------------------------------------------------------- perform half-step update of rotational velocities -----------------------------------------------------------------------*/ void FixNHSphere::nve_v() { // standard nve_v velocity update FixNH::nve_v(); double **omega = atom->omega; double **torque = atom->torque; double *radius = atom->radius; double *rmass = atom->rmass; int *mask = atom->mask; int nlocal = atom->nlocal; if (igroup == atom->firstgroup) nlocal = atom->nfirst; // set timestep here since dt may have changed or come via rRESPA double dtfrotate = dtf / inertia; double dtirotate; // update omega for all particles // d_omega/dt = torque / inertia // 4 cases depending on radius vs shape and rmass vs mass for (int i = 0; i < nlocal; i++) if (mask[i] & groupbit) { dtirotate = dtfrotate / (radius[i]*radius[i]*rmass[i]); omega[i][0] += dtirotate*torque[i][0]; omega[i][1] += dtirotate*torque[i][1]; omega[i][2] += dtirotate*torque[i][2]; } } /* ---------------------------------------------------------------------- perform full-step update of position with dipole orientation, if requested -----------------------------------------------------------------------*/ void FixNHSphere::nve_x() { // standard nve_x position update FixNH::nve_x(); // update mu for dipoles if (dipole_flag) { double **mu = atom->mu; double **omega = atom->omega; int *mask = atom->mask; int nlocal = atom->nlocal; if (dlm_flag == 0){ // d_mu/dt = omega cross mu // renormalize mu to dipole length double msq,scale,g[3]; for (int i = 0; i < nlocal; i++) if (mask[i] & groupbit) if (mu[i][3] > 0.0) { g[0] = mu[i][0] + dtv * (omega[i][1]*mu[i][2]-omega[i][2]*mu[i][1]); g[1] = mu[i][1] + dtv * (omega[i][2]*mu[i][0]-omega[i][0]*mu[i][2]); g[2] = mu[i][2] + dtv * (omega[i][0]*mu[i][1]-omega[i][1]*mu[i][0]); msq = g[0]*g[0] + g[1]*g[1] + g[2]*g[2]; scale = mu[i][3]/sqrt(msq); mu[i][0] = g[0]*scale; mu[i][1] = g[1]*scale; mu[i][2] = g[2]*scale; } } else { // Integrate orientation following Dullweber-Leimkuhler-Maclachlan scheme vector w, w_temp, a; matrix Q, Q_temp, R; double scale,s2,inv_len_mu; for (int i = 0; i < nlocal; i++) { if (mask[i] & groupbit && mu[i][3] > 0.0) { // Construct Q from dipole: // Q is the rotation matrix from space frame to body frame // i.e. v_b = Q.v_s // Define mu to lie along the z axis in the body frame // We take the unit dipole to avoid getting a scaling matrix inv_len_mu = 1.0/mu[i][3]; a[0] = mu[i][0]*inv_len_mu; a[1] = mu[i][1]*inv_len_mu; a[2] = mu[i][2]*inv_len_mu; // v = a x [0 0 1] - cross product of mu in space and body frames // s = |v| // c = a.[0 0 1] = a[2] // vx = [ 0 -v[2] v[1] // v[2] 0 -v[0] // -v[1] v[0] 0 ] // then // Q = I + vx + vx^2 * (1-c)/s^2 s2 = a[0]*a[0] + a[1]*a[1]; if (s2 != 0.0){ // i.e. the vectors are not parallel scale = (1.0 - a[2])/s2; Q[0][0] = 1.0 - scale*a[0]*a[0]; Q[0][1] = -scale*a[0]*a[1]; Q[0][2] = -a[0]; Q[1][0] = -scale*a[0]*a[1]; Q[1][1] = 1.0 - scale*a[1]*a[1]; Q[1][2] = -a[1]; Q[2][0] = a[0]; Q[2][1] = a[1]; Q[2][2] = 1.0 - scale*(a[0]*a[0] + a[1]*a[1]); } else { // if parallel then we just have I or -I Q[0][0] = 1.0/a[2]; Q[0][1] = 0.0; Q[0][2] = 0.0; Q[1][0] = 0.0; Q[1][1] = 1.0/a[2]; Q[1][2] = 0.0; Q[2][0] = 0.0; Q[2][1] = 0.0; Q[2][2] = 1.0/a[2]; } // Local copy of this particle's angular velocity (in space frame) w[0] = omega[i][0]; w[1] = omega[i][1]; w[2] = omega[i][2]; // Transform omega into body frame: w_temp= Q.w matvec(Q,w,w_temp); // Construct rotation R1 BuildRxMatrix(R, dtf/force->ftm2v*w_temp[0]); // Apply R1 to w: w = R.w_temp matvec(R,w_temp,w); // Apply R1 to Q: Q_temp = R^T.Q transpose_times3(R,Q,Q_temp); // Construct rotation R2 BuildRyMatrix(R, dtf/force->ftm2v*w[1]); // Apply R2 to w: w_temp = R.w matvec(R,w,w_temp); // Apply R2 to Q: Q = R^T.Q_temp transpose_times3(R,Q_temp,Q); // Construct rotation R3 BuildRzMatrix(R, 2.0*dtf/force->ftm2v*w_temp[2]); // Apply R3 to w: w = R.w_temp matvec(R,w_temp,w); // Apply R3 to Q: Q_temp = R^T.Q transpose_times3(R,Q,Q_temp); // Construct rotation R4 BuildRyMatrix(R, dtf/force->ftm2v*w[1]); // Apply R4 to w: w_temp = R.w matvec(R,w,w_temp); // Apply R4 to Q: Q = R^T.Q_temp transpose_times3(R,Q_temp,Q); // Construct rotation R5 BuildRxMatrix(R, dtf/force->ftm2v*w_temp[0]); // Apply R5 to w: w = R.w_temp matvec(R,w_temp,w); // Apply R5 to Q: Q_temp = R^T.Q transpose_times3(R,Q,Q_temp); // Transform w back into space frame w_temp = Q^T.w transpose_matvec(Q_temp,w,w_temp); omega[i][0] = w_temp[0]; omega[i][1] = w_temp[1]; omega[i][2] = w_temp[2]; // Set dipole according to updated Q: mu = Q^T.[0 0 1] * |mu| mu[i][0] = Q_temp[2][0] * mu[i][3]; mu[i][1] = Q_temp[2][1] * mu[i][3]; mu[i][2] = Q_temp[2][2] * mu[i][3]; } } } } } /* ---------------------------------------------------------------------- perform half-step scaling of rotatonal velocities -----------------------------------------------------------------------*/ void FixNHSphere::nh_v_temp() { // standard nh_v_temp scaling FixNH::nh_v_temp(); double **omega = atom->omega; int *mask = atom->mask; int nlocal = atom->nlocal; if (igroup == atom->firstgroup) nlocal = atom->nfirst; for (int i = 0; i < nlocal; i++) { if (mask[i] & groupbit) { omega[i][0] *= factor_eta; omega[i][1] *= factor_eta; omega[i][2] *= factor_eta; } } }