/* ---------------------------------------------------------------------- LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator http://lammps.sandia.gov, Sandia National Laboratories Steve Plimpton, sjplimp@sandia.gov Copyright (2003) Sandia Corporation. Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains certain rights in this software. This software is distributed under the GNU General Public License. See the README file in the top-level LAMMPS directory. ------------------------------------------------------------------------- */ #include "string.h" #include "stdlib.h" #include "math.h" #include "fix_npt_sphere.h" #include "atom.h" #include "atom_vec.h" #include "force.h" #include "compute.h" #include "kspace.h" #include "update.h" #include "domain.h" #include "error.h" using namespace LAMMPS_NS; #define INERTIA 0.4 // moment of inertia for sphere enum{NOBIAS,BIAS}; /* ---------------------------------------------------------------------- */ FixNPTSphere::FixNPTSphere(LAMMPS *lmp, int narg, char **arg) : FixNPT(lmp, narg, arg) { // error checks if (!atom->omega_flag || !atom->torque_flag) error->all("Fix npt/sphere requires atom attributes omega, torque"); if (!atom->radius_flag && !atom->avec->shape_type) error->all("Fix npt/sphere requires atom attribute radius or shape"); } /* ---------------------------------------------------------------------- */ void FixNPTSphere::init() { int i,itype; // check that all particles are finite-size and spherical // no point particles allowed if (atom->radius_flag) { double *radius = atom->radius; int *mask = atom->mask; int nlocal = atom->nlocal; if (igroup == atom->firstgroup) nlocal = atom->nfirst; for (i = 0; i < nlocal; i++) if (mask[i] & groupbit) { if (radius[i] == 0.0) error->one("Fix nvt/sphere requires extended particles"); } } else { double **shape = atom->shape; int *type = atom->type; int *mask = atom->mask; int nlocal = atom->nlocal; if (igroup == atom->firstgroup) nlocal = atom->nfirst; for (i = 0; i < nlocal; i++) if (mask[i] & groupbit) { itype = type[i]; if (shape[itype][0] == 0.0) error->one("Fix nvt/sphere requires extended particles"); if (shape[itype][0] != shape[itype][1] || shape[itype][0] != shape[itype][2]) error->one("Fix nvt/sphere requires spherical particle shapes"); } } FixNPT::init(); } /* ---------------------------------------------------------------------- */ void FixNPTSphere::initial_integrate(int vflag) { int i,itype; double dtfm,dtirotate; double delta = update->ntimestep - update->beginstep; delta /= update->endstep - update->beginstep; // update eta_dot t_target = t_start + delta * (t_stop-t_start); f_eta = t_freq*t_freq * (t_current/t_target - 1.0); eta_dot += f_eta*dthalf; eta_dot *= drag_factor; eta += dtv*eta_dot; // update omega_dot // for non-varying dims, p_freq is 0.0, so omega_dot doesn't change double f_omega,volume; if (dimension == 3) volume = domain->xprd*domain->yprd*domain->zprd; else volume = domain->xprd*domain->yprd; double denskt = atom->natoms*boltz*t_target / volume * nktv2p; for (i = 0; i < 3; i++) { p_target[i] = p_start[i] + delta * (p_stop[i]-p_start[i]); f_omega = p_freq[i]*p_freq[i] * (p_current[i]-p_target[i])/denskt; omega_dot[i] += f_omega*dthalf; omega_dot[i] *= drag_factor; omega[i] += dtv*omega_dot[i]; factor[i] = exp(-dthalf*(eta_dot+omega_dot[i])); dilation[i] = exp(dthalf*omega_dot[i]); } factor_rotate = exp(-dthalf*eta_dot); // update v of atoms in group // for BIAS: // calculate temperature since some computes require temp // computed on current nlocal atoms to remove bias // OK to not test returned v = 0, since factor is multiplied by v double **x = atom->x; double **v = atom->v; double **f = atom->f; double **omega = atom->omega; double **torque = atom->torque; double *radius = atom->radius; double *rmass = atom->rmass; double *mass = atom->mass; double **shape = atom->shape; int *type = atom->type; int *mask = atom->mask; int nlocal = atom->nlocal; if (igroup == atom->firstgroup) nlocal = atom->nfirst; if (rmass) { if (which == NOBIAS) { for (i = 0; i < nlocal; i++) { if (mask[i] & groupbit) { dtfm = dtf / rmass[i]; v[i][0] = v[i][0]*factor[0] + dtfm*f[i][0]; v[i][1] = v[i][1]*factor[1] + dtfm*f[i][1]; v[i][2] = v[i][2]*factor[2] + dtfm*f[i][2]; } } } else { double tmp = temperature->compute_scalar(); for (i = 0; i < nlocal; i++) { if (mask[i] & groupbit) { temperature->remove_bias(i,v[i]); dtfm = dtf / rmass[i]; v[i][0] = v[i][0]*factor[0] + dtfm*f[i][0]; v[i][1] = v[i][1]*factor[1] + dtfm*f[i][1]; v[i][2] = v[i][2]*factor[2] + dtfm*f[i][2]; temperature->restore_bias(i,v[i]); } } } } else { if (which == NOBIAS) { for (i = 0; i < nlocal; i++) { if (mask[i] & groupbit) { dtfm = dtf / mass[type[i]]; v[i][0] = v[i][0]*factor[0] + dtfm*f[i][0]; v[i][1] = v[i][1]*factor[1] + dtfm*f[i][1]; v[i][2] = v[i][2]*factor[2] + dtfm*f[i][2]; } } } else { double tmp = temperature->compute_scalar(); for (i = 0; i < nlocal; i++) { if (mask[i] & groupbit) { temperature->remove_bias(i,v[i]); dtfm = dtf / mass[type[i]]; v[i][0] = v[i][0]*factor[0] + dtfm*f[i][0]; v[i][1] = v[i][1]*factor[1] + dtfm*f[i][1]; v[i][2] = v[i][2]*factor[2] + dtfm*f[i][2]; temperature->restore_bias(i,v[i]); } } } } // remap simulation box and all owned atoms by 1/2 step remap(0); // update x by full step for atoms in group for (i = 0; i < nlocal; i++) { if (mask[i] & groupbit) { x[i][0] += dtv * v[i][0]; x[i][1] += dtv * v[i][1]; x[i][2] += dtv * v[i][2]; } } // set timestep here since dt may have changed or come via rRESPA double dtfrotate = dtf / INERTIA; // update omega for all particles // d_omega/dt = torque / inertia // 4 cases depending on radius vs shape and rmass vs mass if (radius) { if (rmass) { for (i = 0; i < nlocal; i++) { if (mask[i] & groupbit) { dtirotate = dtfrotate / (radius[i]*radius[i]*rmass[i]); omega[i][0] = omega[i][0]*factor_rotate + dtirotate*torque[i][0]; omega[i][1] = omega[i][1]*factor_rotate + dtirotate*torque[i][1]; omega[i][2] = omega[i][2]*factor_rotate + dtirotate*torque[i][2]; } } } else { for (i = 0; i < nlocal; i++) { if (mask[i] & groupbit) { dtirotate = dtfrotate / (radius[i]*radius[i]*mass[type[i]]); omega[i][0] = omega[i][0]*factor_rotate + dtirotate*torque[i][0]; omega[i][1] = omega[i][1]*factor_rotate + dtirotate*torque[i][1]; omega[i][2] = omega[i][2]*factor_rotate + dtirotate*torque[i][2]; } } } } else { if (rmass) { for (i = 0; i < nlocal; i++) { if (mask[i] & groupbit) { itype = type[i]; dtirotate = dtfrotate / (shape[itype][0]*shape[itype][0]*rmass[i]); omega[i][0] = omega[i][0]*factor_rotate + dtirotate*torque[i][0]; omega[i][1] = omega[i][1]*factor_rotate + dtirotate*torque[i][1]; omega[i][2] = omega[i][2]*factor_rotate + dtirotate*torque[i][2]; } } } else { for (i = 0; i < nlocal; i++) { if (mask[i] & groupbit) { itype = type[i]; dtirotate = dtfrotate / (shape[itype][0]*shape[itype][0]*mass[itype]); omega[i][0] = omega[i][0]*factor_rotate + dtirotate*torque[i][0]; omega[i][1] = omega[i][1]*factor_rotate + dtirotate*torque[i][1]; omega[i][2] = omega[i][2]*factor_rotate + dtirotate*torque[i][2]; } } } } // remap simulation box and all owned atoms by 1/2 step // redo KSpace coeffs since volume has changed remap(0); if (kspace_flag) force->kspace->setup(); } /* ---------------------------------------------------------------------- */ void FixNPTSphere::final_integrate() { int i,itype; double dtfm,dtirotate; double **v = atom->v; double **f = atom->f; double **omega = atom->omega; double **torque = atom->torque; double *radius = atom->radius; double *rmass = atom->rmass; double *mass = atom->mass; double **shape = atom->shape; int *type = atom->type; int *mask = atom->mask; int nlocal = atom->nlocal; if (igroup == atom->firstgroup) nlocal = atom->nfirst; // set timestep here since dt may have changed or come via rRESPA double dtfrotate = dtf / INERTIA; // update v,omega of atoms in group // d_omega/dt = torque / inertia // 8 cases depending on radius vs shape, rmass vs mass, bias vs nobias // for BIAS: // calculate temperature since some computes require temp // computed on current nlocal atoms to remove bias // OK to not test returned v = 0, since factor is multiplied by v if (radius) { if (rmass) { if (which == NOBIAS) { for (i = 0; i < nlocal; i++) { if (mask[i] & groupbit) { dtfm = dtf / rmass[i]; v[i][0] = (v[i][0] + dtfm*f[i][0]) * factor[0]; v[i][1] = (v[i][1] + dtfm*f[i][1]) * factor[1]; v[i][2] = (v[i][2] + dtfm*f[i][2]) * factor[2]; dtirotate = dtfrotate / (radius[i]*radius[i]*rmass[i]); omega[i][0] = (omega[i][0] + dtirotate*torque[i][0]) * factor_rotate; omega[i][1] = (omega[i][1] + dtirotate*torque[i][1]) * factor_rotate; omega[i][2] = (omega[i][2] + dtirotate*torque[i][2]) * factor_rotate; } } } else { double tmp = temperature->compute_scalar(); for (i = 0; i < nlocal; i++) { if (mask[i] & groupbit) { temperature->remove_bias(i,v[i]); dtfm = dtf / rmass[i]; v[i][0] = (v[i][0] + dtfm*f[i][0]) * factor[0]; v[i][1] = (v[i][1] + dtfm*f[i][1]) * factor[1]; v[i][2] = (v[i][2] + dtfm*f[i][2]) * factor[2]; temperature->restore_bias(i,v[i]); dtirotate = dtfrotate / (radius[i]*radius[i]*rmass[i]); omega[i][0] = (omega[i][0] + dtirotate*torque[i][0]) * factor_rotate; omega[i][1] = (omega[i][1] + dtirotate*torque[i][1]) * factor_rotate; omega[i][2] = (omega[i][2] + dtirotate*torque[i][2]) * factor_rotate; } } } } else { if (which == NOBIAS) { for (i = 0; i < nlocal; i++) { if (mask[i] & groupbit) { itype = type[i]; dtfm = dtf / mass[itype]; v[i][0] = (v[i][0] + dtfm*f[i][0]) * factor[0]; v[i][1] = (v[i][1] + dtfm*f[i][1]) * factor[1]; v[i][2] = (v[i][2] + dtfm*f[i][2]) * factor[2]; dtirotate = dtfrotate / (radius[i]*radius[i]*mass[itype]); omega[i][0] = (omega[i][0] + dtirotate*torque[i][0]) * factor_rotate; omega[i][1] = (omega[i][1] + dtirotate*torque[i][1]) * factor_rotate; omega[i][2] = (omega[i][2] + dtirotate*torque[i][2]) * factor_rotate; } } } else { for (i = 0; i < nlocal; i++) { double tmp = temperature->compute_scalar(); if (mask[i] & groupbit) { itype = type[i]; temperature->remove_bias(i,v[i]); dtfm = dtf / mass[itype]; v[i][0] = (v[i][0] + dtfm*f[i][0]) * factor[0]; v[i][1] = (v[i][1] + dtfm*f[i][1]) * factor[1]; v[i][2] = (v[i][2] + dtfm*f[i][2]) * factor[2]; temperature->restore_bias(i,v[i]); dtirotate = dtfrotate / (radius[i]*radius[i]*mass[itype]); omega[i][0] = (omega[i][0] + dtirotate*torque[i][0]) * factor_rotate; omega[i][1] = (omega[i][1] + dtirotate*torque[i][1]) * factor_rotate; omega[i][2] = (omega[i][2] + dtirotate*torque[i][2]) * factor_rotate; } } } } } else { if (rmass) { if (which == NOBIAS) { for (i = 0; i < nlocal; i++) { if (mask[i] & groupbit) { itype = type[i]; dtfm = dtf / rmass[i]; v[i][0] = (v[i][0] + dtfm*f[i][0]) * factor[0]; v[i][1] = (v[i][1] + dtfm*f[i][1]) * factor[1]; v[i][2] = (v[i][2] + dtfm*f[i][2]) * factor[2]; dtirotate = dtfrotate / (shape[itype][0]*shape[itype][0]*rmass[i]); omega[i][0] = (omega[i][0] + dtirotate*torque[i][0]) * factor_rotate; omega[i][1] = (omega[i][1] + dtirotate*torque[i][1]) * factor_rotate; omega[i][2] = (omega[i][2] + dtirotate*torque[i][2]) * factor_rotate; } } } else { double tmp = temperature->compute_scalar(); for (i = 0; i < nlocal; i++) { if (mask[i] & groupbit) { itype = type[i]; temperature->remove_bias(i,v[i]); dtfm = dtf / rmass[i]; v[i][0] = (v[i][0] + dtfm*f[i][0]) * factor[0]; v[i][1] = (v[i][1] + dtfm*f[i][1]) * factor[1]; v[i][2] = (v[i][2] + dtfm*f[i][2]) * factor[2]; temperature->restore_bias(i,v[i]); dtirotate = dtfrotate / (shape[itype][0]*shape[itype][0]*rmass[i]); omega[i][0] = (omega[i][0] + dtirotate*torque[i][0]) * factor_rotate; omega[i][1] = (omega[i][1] + dtirotate*torque[i][1]) * factor_rotate; omega[i][2] = (omega[i][2] + dtirotate*torque[i][2]) * factor_rotate; } } } } else { if (which == NOBIAS) { for (i = 0; i < nlocal; i++) { if (mask[i] & groupbit) { itype = type[i]; dtfm = dtf / mass[itype]; v[i][0] = (v[i][0] + dtfm*f[i][0]) * factor[0]; v[i][1] = (v[i][1] + dtfm*f[i][1]) * factor[1]; v[i][2] = (v[i][2] + dtfm*f[i][2]) * factor[2]; dtirotate = dtfrotate / (shape[itype][0]*shape[itype][0]*mass[itype]); omega[i][0] = (omega[i][0] + dtirotate*torque[i][0]) * factor_rotate; omega[i][1] = (omega[i][1] + dtirotate*torque[i][1]) * factor_rotate; omega[i][2] = (omega[i][2] + dtirotate*torque[i][2]) * factor_rotate; } } } else { double tmp = temperature->compute_scalar(); for (i = 0; i < nlocal; i++) { if (mask[i] & groupbit) { itype = type[i]; temperature->remove_bias(i,v[i]); dtfm = dtf / mass[itype]; v[i][0] = (v[i][0] + dtfm*f[i][0]) * factor[0]; v[i][1] = (v[i][1] + dtfm*f[i][1]) * factor[1]; v[i][2] = (v[i][2] + dtfm*f[i][2]) * factor[2]; temperature->restore_bias(i,v[i]); dtirotate = dtfrotate / (shape[itype][0]*shape[itype][0]*mass[itype]); omega[i][0] = (omega[i][0] + dtirotate*torque[i][0]) * factor_rotate; omega[i][1] = (omega[i][1] + dtirotate*torque[i][1]) * factor_rotate; omega[i][2] = (omega[i][2] + dtirotate*torque[i][2]) * factor_rotate; } } } } } // compute new T,P t_current = temperature->compute_scalar(); if (press_couple == 0) { double tmp = pressure->compute_scalar(); } else { temperature->compute_vector(); pressure->compute_vector(); } couple(); // trigger virial computation on next timestep pressure->addstep(update->ntimestep+1); // update eta_dot f_eta = t_freq*t_freq * (t_current/t_target - 1.0); eta_dot += f_eta*dthalf; eta_dot *= drag_factor; // update omega_dot // for non-varying dims, p_freq is 0.0, so omega_dot doesn't change double f_omega,volume; if (dimension == 3) volume = domain->xprd*domain->yprd*domain->zprd; else volume = domain->xprd*domain->yprd; double denskt = atom->natoms*boltz*t_target / volume * nktv2p; for (i = 0; i < 3; i++) { f_omega = p_freq[i]*p_freq[i] * (p_current[i]-p_target[i])/denskt; omega_dot[i] += f_omega*dthalf; omega_dot[i] *= drag_factor; } }