/* ---------------------------------------------------------------------- LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator Original Version: http://lammps.sandia.gov, Sandia National Laboratories Steve Plimpton, sjplimp@sandia.gov See the README file in the top-level LAMMPS directory. ----------------------------------------------------------------------- USER-CUDA Package and associated modifications: https://sourceforge.net/projects/lammpscuda/ Christian Trott, christian.trott@tu-ilmenau.de Lars Winterfeld, lars.winterfeld@tu-ilmenau.de Theoretical Physics II, University of Technology Ilmenau, Germany See the README file in the USER-CUDA directory. This software is distributed under the GNU General Public License. ------------------------------------------------------------------------- */ static inline __device__ void check_distance(X_FLOAT &xtmp,X_FLOAT &ytmp,X_FLOAT &ztmp,int &i,int groupbit) { if(_dist_check) { X_FLOAT d=X_F(0.0); if(i<_nlocal) { X_FLOAT tmp=xtmp-_xhold[i]; d=tmp*tmp; tmp=ytmp-_xhold[i+_maxhold]; d+=tmp*tmp; tmp=ztmp-_xhold[i+2*_maxhold]; d+=tmp*tmp; d=((_mask[i] & groupbit))?d:X_F(0.0); } if(not __all(d<=_triggerneighsq)) _reneigh_flag[0]=1; } } __global__ void FixNHCuda_nh_v_press_Kernel(int groupbit, F_FLOAT3 factor,int p_triclinic,F_FLOAT3 factor2) { int i=(blockIdx.x*gridDim.y+blockIdx.y)*blockDim.x+threadIdx.x; if(i < _nlocal && _mask[i] & groupbit) { V_FLOAT* my_v = _v + i; V_FLOAT vx=my_v[0]; V_FLOAT vy=my_v[_nmax]; V_FLOAT vz=my_v[2*_nmax]; vx*=factor.x; vy*=factor.y; vz*=factor.z; if(p_triclinic) { vx += vy*factor2.z + vz*factor2.y; vy += vz*factor2.x; } vx*=factor.x; vy*=factor.y; vz*=factor.z; my_v[0] = vx; my_v[_nmax] = vy; my_v[2*_nmax] = vz; } } __global__ void FixNHCuda_nh_v_temp_Kernel(int groupbit, F_FLOAT factor_eta) { int i=(blockIdx.x*gridDim.y+blockIdx.y)*blockDim.x+threadIdx.x; if(i < _nlocal && _mask[i] & groupbit) { V_FLOAT* my_v = _v + i; my_v[0]*=factor_eta; my_v[_nmax]*=factor_eta; my_v[2*_nmax]*=factor_eta; } } __global__ void FixNHCuda_nh_v_press_and_nve_v_NoBias_Kernel(int groupbit, F_FLOAT3 factor,int p_triclinic,F_FLOAT3 factor2) { int i=(blockIdx.x*gridDim.y+blockIdx.y)*blockDim.x+threadIdx.x; if(i < _nlocal && _mask[i] & groupbit) { F_FLOAT* my_f = _f + i; V_FLOAT* my_v = _v + i; V_FLOAT dtfm = _dtf; if(_rmass_flag) dtfm*= V_F(1.0) / _rmass[i]; else dtfm*= V_F(1.0) / _mass[_type[i]]; V_FLOAT vx=my_v[0]; V_FLOAT vy=my_v[_nmax]; V_FLOAT vz=my_v[2*_nmax]; vx*=factor.x; vy*=factor.y; vz*=factor.z; if(p_triclinic) { vx += vy*factor2.z + vz*factor2.y; vy += vz*factor2.x; } vx*=factor.x; vy*=factor.y; vz*=factor.z; my_v[0] = vx + dtfm * my_f[0]; my_v[_nmax] = vy + dtfm * my_f[_nmax]; my_v[2*_nmax] = vz + dtfm * my_f[_nmax*2]; } } __global__ void FixNHCuda_nve_v_Kernel(int groupbit) { int i=(blockIdx.x*gridDim.y+blockIdx.y)*blockDim.x+threadIdx.x; if(i < _nlocal && _mask[i] & groupbit) { F_FLOAT* my_f = _f + i; V_FLOAT* my_v = _v + i; V_FLOAT dtfm = _dtf; if(_rmass_flag) dtfm*=V_F(1.0) / _rmass[i]; else dtfm*=V_F(1.0) / _mass[_type[i]]; *my_v = (*my_v + dtfm*(*my_f)); my_f += _nmax; my_v += _nmax; *my_v = (*my_v + dtfm*(*my_f)); my_f += _nmax; my_v += _nmax; *my_v = (*my_v + dtfm*(*my_f)); } } __global__ void FixNHCuda_nve_x_Kernel(int groupbit) { X_FLOAT xtmp,ytmp,ztmp; int i=(blockIdx.x*gridDim.y+blockIdx.y)*blockDim.x+threadIdx.x; if(i < _nlocal && _mask[i] & groupbit) { V_FLOAT* my_v = _v + i; X_FLOAT* my_x = _x + i; xtmp = *my_x += _dtv * *my_v; my_v += _nmax; my_x += _nmax; ytmp = *my_x += _dtv * *my_v; my_v += _nmax; my_x += _nmax; ztmp = *my_x += _dtv * *my_v; } check_distance(xtmp,ytmp,ztmp,i,groupbit); } __global__ void FixNHCuda_nve_v_and_nh_v_press_NoBias_Kernel(int groupbit, F_FLOAT3 factor,int p_triclinic,F_FLOAT3 factor2) { int i=(blockIdx.x*gridDim.y+blockIdx.y)*blockDim.x+threadIdx.x; if(i < _nlocal && _mask[i] & groupbit) { F_FLOAT* my_f = _f + i; V_FLOAT* my_v = _v + i; V_FLOAT dtfm = _dtf; if(_rmass_flag) dtfm*=V_F(1.0) / _rmass[i]; else dtfm*=V_F(1.0) / _mass[_type[i]]; V_FLOAT vx = my_v[0] + dtfm*my_f[0]; V_FLOAT vy = my_v[_nmax] + dtfm*my_f[_nmax]; V_FLOAT vz = my_v[2*_nmax] + dtfm*my_f[2*_nmax]; vx*=factor.x; vy*=factor.y; vz*=factor.z; if(p_triclinic) { vx += vy*factor2.z + vz*factor2.y; vy += vz*factor2.x; } vx*=factor.x; vy*=factor.y; vz*=factor.z; my_v[0] = vx; my_v[_nmax] = vy; my_v[2*_nmax] = vz; } }