/*************************************************************************** ocl_device.h ------------------- W. Michael Brown Utilities for dealing with OpenCL devices __________________________________________________________________________ This file is part of the Geryon Unified Coprocessor Library (UCL) __________________________________________________________________________ begin : Mon Dec 23 2009 copyright : (C) 2009 by W. Michael Brown email : brownw@ornl.gov ***************************************************************************/ /* ----------------------------------------------------------------------- Copyright (2009) Sandia Corporation. Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains certain rights in this software. This software is distributed under the Simplified BSD License. ----------------------------------------------------------------------- */ #ifndef OCL_DEVICE #define OCL_DEVICE #include #include #include #ifdef __APPLE__ #include #include #else #include #include #endif #include "ocl_macros.h" #include "ucl_types.h" namespace ucl_opencl { // -------------------------------------------------------------------------- // - COMMAND QUEUE STUFF // -------------------------------------------------------------------------- typedef cl_command_queue command_queue; typedef cl_context context_type; inline void ucl_sync(cl_command_queue &cq) { CL_SAFE_CALL(clFinish(cq)); } struct OCLProperties { std::string name; cl_device_type device_type; cl_ulong global_mem; cl_ulong shared_mem; cl_ulong const_mem; cl_uint compute_units; cl_uint clock; size_t work_group_size; size_t work_item_size[3]; bool double_precision; int alignment; size_t timer_resolution; }; /// Class for looking at data parallel device properties /** \note Calls to change the device outside of the class results in incorrect * behavior * \note There is no error checking for indexing past the number of devices **/ class UCL_Device { public: /// Collect properties for every device on the node /** \note You must set the active GPU with set() before using the device **/ UCL_Device(); ~UCL_Device(); /// Return the number of platforms (0 if error or no platforms) inline int num_platforms() { return _num_platforms; } /// Return a string with name and info of the current platform std::string platform_name(); /// Return the number of devices that support OpenCL inline int num_devices() { return _num_devices; } /// Set the OpenCL device to the specified device number /** A context and default command queue will be created for the device * * Returns UCL_SUCCESS if successful or UCL_ERROR if the device could not * be allocated for use **/ int set(int num); /// Get the current device number inline int device_num() { return _device; } /// Returns the context for the current device inline cl_context & context() { return _context; } /// Returns the default stream for the current device inline command_queue & cq() { return cq(_default_cq); } /// Returns the stream indexed by i inline command_queue & cq(const int i) { return _cq[i]; } /// Set the default command queue /** \param i index of the command queue (as added by push_command_queue()) If i is 0, the command queue created with device initialization is used **/ inline void set_command_queue(const int i) { _default_cq=i; } /// Block until all commands in the default stream have completed inline void sync() { sync(_default_cq); } /// Block until all commands in the specified stream have completed inline void sync(const int i) { ucl_sync(cq(i)); } /// Get the number of command queues currently available on device inline int num_queues() { return _cq.size(); } /// Add a command queue for device computations (with profiling enabled) inline void push_command_queue() { cl_int errorv; _cq.push_back(cl_command_queue()); _cq.back()=clCreateCommandQueue(_context,_cl_device, CL_QUEUE_PROFILING_ENABLE,&errorv); if (errorv!=CL_SUCCESS) { std::cerr << "Could not create command queue on device: " << name() << std::endl; UCL_GERYON_EXIT; } } /// Remove a stream for device computations /** \note You cannot delete the default stream **/ inline void pop_command_queue() { if (_cq.size()<2) return; CL_SAFE_CALL(clReleaseCommandQueue(_cq.back())); _cq.pop_back(); } /// Get the current OpenCL device name inline std::string name() { return name(_device); } /// Get the OpenCL device name inline std::string name(const int i) { return std::string(_properties[i].name); } /// Get a string telling the type of the current device inline std::string device_type_name() { return device_type_name(_device); } /// Get a string telling the type of the device inline std::string device_type_name(const int i); /// Get current device type (UCL_CPU, UCL_GPU, UCL_ACCELERATOR, UCL_DEFAULT) inline int device_type() { return device_type(_device); } /// Get device type (UCL_CPU, UCL_GPU, UCL_ACCELERATOR, UCL_DEFAULT) inline int device_type(const int i); /// Returns true if double precision is support for the current device bool double_precision() { return double_precision(_device); } /// Returns true if double precision is support for the device bool double_precision(const int i) {return _properties[i].double_precision;} /// Get the number of cores in the current device inline unsigned cores() { return cores(_device); } /// Get the number of cores inline unsigned cores(const int i) { if (device_type(i)==UCL_CPU) return _properties[i].compute_units; else return _properties[i].compute_units*8; } /// Get the gigabytes of global memory in the current device inline double gigabytes() { return gigabytes(_device); } /// Get the gigabytes of global memory inline double gigabytes(const int i) { return static_cast(_properties[i].global_mem)/1073741824; } /// Get the bytes of global memory in the current device inline size_t bytes() { return bytes(_device); } /// Get the bytes of global memory inline size_t bytes(const int i) { return _properties[i].global_mem; } /// Return the GPGPU revision number for current device //inline double revision() { return revision(_device); } /// Return the GPGPU revision number //inline double revision(const int i) // { return //static_cast(_properties[i].minor)/10+_properties[i].major;} /// Clock rate in GHz for current device inline double clock_rate() { return clock_rate(_device); } /// Clock rate in GHz inline double clock_rate(const int i) { return _properties[i].clock*1e-3;} /// Return the address alignment in bytes inline int alignment() { return alignment(_device); } /// Return the address alignment in bytes inline int alignment(const int i) { return _properties[i].alignment; } /// Return the timer resolution inline size_t timer_resolution() { return timer_resolution(_device); } /// Return the timer resolution inline size_t timer_resolution(const int i) { return _properties[i].timer_resolution; } /// Get the maximum number of threads per block inline size_t group_size() { return group_size(_device); } /// Get the maximum number of threads per block inline size_t group_size(const int i) { return _properties[i].work_group_size; } /// Return the maximum memory pitch in bytes for current device inline size_t max_pitch() { return max_pitch(_device); } /// Return the maximum memory pitch in bytes inline size_t max_pitch(const int i) { return 0; } /// Returns false if accelerator cannot be shared by multiple processes /** If it cannot be determined, true is returned **/ inline bool sharing_supported() { return sharing_supported(_device); } /// Returns false if accelerator cannot be shared by multiple processes /** If it cannot be determined, true is returned **/ inline bool sharing_supported(const int i) { return true; } /// List all devices along with all properties void print_all(std::ostream &out); /// Return the OpenCL type for the device inline cl_device_id & cl_device() { return _cl_device; } private: int _num_platforms; // Number of platforms int _platform; // UCL_Device ID for current platform cl_platform_id _cl_platform; // OpenCL ID for current platform cl_context _context; // Context used for accessing the device std::vector _cq;// The default command queue for this device int _device; // UCL_Device ID for current device cl_device_id _cl_device; // OpenCL ID for current device std::vector _cl_devices; // OpenCL IDs for all devices int _num_devices; // Number of devices std::vector _properties; // Properties for each device void add_properties(cl_device_id); int create_context(); int _default_cq; }; // Grabs the properties for all devices inline UCL_Device::UCL_Device() { cl_int errorv; cl_uint nplatforms; _cl_device=0; _device=-1; _num_devices=0; _platform=0; _default_cq=0; // --- Get Number of Platforms errorv=clGetPlatformIDs(1,&_cl_platform,&nplatforms); if (errorv!=CL_SUCCESS) { _num_platforms=0; return; } else _num_platforms=static_cast(nplatforms); // --- Get Number of Devices cl_uint n; errorv=clGetDeviceIDs(_cl_platform,CL_DEVICE_TYPE_ALL,0,NULL,&n); _num_devices=n; if (errorv!=CL_SUCCESS || _num_devices==0) { _num_devices=0; return; } cl_device_id device_list[_num_devices]; CL_SAFE_CALL(clGetDeviceIDs(_cl_platform,CL_DEVICE_TYPE_ALL,n,device_list, &n)); // --- Store properties for each device for (int i=0; i<_num_devices; i++) { _cl_devices.push_back(device_list[i]); add_properties(device_list[i]); } } inline UCL_Device::~UCL_Device() { if (_device>-1) { for (size_t i=0; i<_cq.size(); i++) { CL_DESTRUCT_CALL(clReleaseCommandQueue(_cq.back())); _cq.pop_back(); } CL_DESTRUCT_CALL(clReleaseContext(_context)); } } inline int UCL_Device::create_context() { cl_int errorv; cl_context_properties props[3]; props[0]=CL_CONTEXT_PLATFORM; props[1]=_platform; props[2]=0; _context=clCreateContext(0,1,&_cl_device,NULL,NULL,&errorv); if (errorv!=CL_SUCCESS) { #ifndef UCL_NO_EXIT std::cerr << "UCL Error: Could not access accelerator number " << _device << " for use.\n"; UCL_GERYON_EXIT; #endif return UCL_ERROR; } push_command_queue(); _default_cq=0; return UCL_SUCCESS; } inline void UCL_Device::add_properties(cl_device_id device_list) { OCLProperties op; char buffer[1024]; CL_SAFE_CALL(clGetDeviceInfo(device_list,CL_DEVICE_NAME,1024,buffer,NULL)); op.name=buffer; CL_SAFE_CALL(clGetDeviceInfo(device_list,CL_DEVICE_GLOBAL_MEM_SIZE, sizeof(op.global_mem),&op.global_mem,NULL)); CL_SAFE_CALL(clGetDeviceInfo(device_list,CL_DEVICE_LOCAL_MEM_SIZE, sizeof(op.shared_mem),&op.shared_mem,NULL)); CL_SAFE_CALL(clGetDeviceInfo(device_list,CL_DEVICE_MAX_CONSTANT_BUFFER_SIZE, sizeof(op.const_mem),&op.const_mem,NULL)); CL_SAFE_CALL(clGetDeviceInfo(device_list,CL_DEVICE_TYPE, sizeof(op.device_type),&op.device_type,NULL)); CL_SAFE_CALL(clGetDeviceInfo(device_list,CL_DEVICE_MAX_COMPUTE_UNITS, sizeof(op.compute_units),&op.compute_units, NULL)); CL_SAFE_CALL(clGetDeviceInfo(device_list,CL_DEVICE_MAX_CLOCK_FREQUENCY, sizeof(op.clock),&op.clock,NULL)); CL_SAFE_CALL(clGetDeviceInfo(device_list,CL_DEVICE_MAX_WORK_GROUP_SIZE, sizeof(op.work_group_size),&op.work_group_size, NULL)); CL_SAFE_CALL(clGetDeviceInfo(device_list,CL_DEVICE_MAX_WORK_ITEM_SIZES, 3*sizeof(op.work_item_size[0]),op.work_item_size, NULL)); CL_SAFE_CALL(clGetDeviceInfo(device_list,CL_DEVICE_MEM_BASE_ADDR_ALIGN, sizeof(cl_uint),&op.alignment,NULL)); op.alignment/=8; // Determine if double precision is supported cl_uint double_width; CL_SAFE_CALL(clGetDeviceInfo(device_list, CL_DEVICE_PREFERRED_VECTOR_WIDTH_DOUBLE, sizeof(double_width),&double_width,NULL)); if (double_width==0) op.double_precision=false; else op.double_precision=true; CL_SAFE_CALL(clGetDeviceInfo(device_list, CL_DEVICE_PROFILING_TIMER_RESOLUTION, sizeof(size_t),&op.timer_resolution,NULL)); _properties.push_back(op); } inline std::string UCL_Device::platform_name() { char info[1024]; CL_SAFE_CALL(clGetPlatformInfo(_cl_platform,CL_PLATFORM_VENDOR,1024,info, NULL)); std::string ans=std::string(info)+' '; CL_SAFE_CALL(clGetPlatformInfo(_cl_platform,CL_PLATFORM_NAME,1024,info, NULL)); ans+=std::string(info)+' '; CL_SAFE_CALL(clGetPlatformInfo(_cl_platform,CL_PLATFORM_VERSION,1024,info, NULL)); ans+=std::string(info); return ans; } // Get a string telling the type of the device inline std::string UCL_Device::device_type_name(const int i) { if (_properties[i].device_type==CL_DEVICE_TYPE_CPU) return "CPU"; else if (_properties[i].device_type==CL_DEVICE_TYPE_GPU) return "GPU"; else if (_properties[i].device_type==CL_DEVICE_TYPE_ACCELERATOR) return "ACCELERATOR"; else return "DEFAULT"; } // Get a string telling the type of the device inline int UCL_Device::device_type(const int i) { if (_properties[i].device_type==CL_DEVICE_TYPE_CPU) return UCL_CPU; else if (_properties[i].device_type==CL_DEVICE_TYPE_GPU) return UCL_GPU; else if (_properties[i].device_type==CL_DEVICE_TYPE_ACCELERATOR) return UCL_ACCELERATOR; else return UCL_DEFAULT; } // Set the CUDA device to the specified device number inline int UCL_Device::set(int num) { if (_device==num) return UCL_SUCCESS; if (_device>-1) { for (size_t i=0; i<_cq.size(); i++) { CL_SAFE_CALL(clReleaseCommandQueue(_cq.back())); _cq.pop_back(); } CL_SAFE_CALL(clReleaseContext(_context)); } cl_device_id device_list[_num_devices]; cl_uint n; CL_SAFE_CALL(clGetDeviceIDs(_cl_platform,CL_DEVICE_TYPE_ALL,_num_devices, device_list,&n)); _device=num; _cl_device=device_list[_device]; return create_context(); } // List all devices along with all properties inline void UCL_Device::print_all(std::ostream &out) { if (num_devices() == 0) out << "There is no device supporting OpenCL\n"; for (int i=0; i