/* ---------------------------------------------------------------------- LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator https://www.lammps.org/, Sandia National Laboratories LAMMPS development team: developers@lammps.org Copyright (2003) Sandia Corporation. Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains certain rights in this software. This software is distributed under the GNU General Public License. See the README file in the top-level LAMMPS directory. ------------------------------------------------------------------------- */ /* ---------------------------------------------------------------------- Contributing author: Axel Kohlmeyer (Temple U) ------------------------------------------------------------------------- */ #include "pair_lepton.h" #include "atom.h" #include "comm.h" #include "error.h" #include "force.h" #include "memory.h" #include "neigh_list.h" #include "Lepton.h" #include "lepton_utils.h" #include #include #include using namespace LAMMPS_NS; /* ---------------------------------------------------------------------- */ PairLepton::PairLepton(LAMMPS *lmp) : Pair(lmp), cut(nullptr), type2expression(nullptr), offset(nullptr) { respa_enable = 0; single_enable = 1; writedata = 1; restartinfo = 1; reinitflag = 0; cut_global = 0.0; centroidstressflag = CENTROID_SAME; functions["zbl"] = new Lepton::ZBLFunction(force->qqr2e, force->angstrom, force->qelectron); } /* ---------------------------------------------------------------------- */ PairLepton::~PairLepton() { for (auto &f : functions) delete f.second; if (allocated) { memory->destroy(cut); memory->destroy(cutsq); memory->destroy(setflag); memory->destroy(type2expression); memory->destroy(offset); } } /* ---------------------------------------------------------------------- */ void PairLepton::compute(int eflag, int vflag) { ev_init(eflag, vflag); if (evflag) { if (eflag) { if (force->newton_pair) eval<1, 1, 1>(); else eval<1, 1, 0>(); } else { if (force->newton_pair) eval<1, 0, 1>(); else eval<1, 0, 0>(); } } else { if (force->newton_pair) eval<0, 0, 1>(); else eval<0, 0, 0>(); } if (vflag_fdotr) virial_fdotr_compute(); } /* ---------------------------------------------------------------------- */ template void PairLepton::eval() { const double *const *const x = atom->x; double *const *const f = atom->f; const int *const type = atom->type; const int nlocal = atom->nlocal; const double *const special_lj = force->special_lj; const int inum = list->inum; const int *const ilist = list->ilist; const int *const numneigh = list->numneigh; const int *const *const firstneigh = list->firstneigh; double fxtmp, fytmp, fztmp; std::vector pairforce; std::vector pairpot; std::vector has_ref; try { for (const auto &expr : expressions) { auto parsed = Lepton::Parser::parse(LeptonUtils::substitute(expr, lmp), functions); pairforce.emplace_back(parsed.differentiate("r").createCompiledExpression()); has_ref.push_back(true); try { pairforce.back().getVariableReference("r"); } catch (Lepton::Exception &) { has_ref.back() = false; } if (EFLAG) pairpot.emplace_back(parsed.createCompiledExpression()); } } catch (std::exception &e) { error->all(FLERR, e.what()); } // loop over neighbors of my atoms for (int ii = 0; ii < inum; ii++) { const int i = ilist[ii]; const double xtmp = x[i][0]; const double ytmp = x[i][1]; const double ztmp = x[i][2]; const int itype = type[i]; const int *jlist = firstneigh[i]; const int jnum = numneigh[i]; fxtmp = fytmp = fztmp = 0.0; for (int jj = 0; jj < jnum; jj++) { int j = jlist[jj]; const double factor_lj = special_lj[sbmask(j)]; j &= NEIGHMASK; const int jtype = type[j]; const double delx = xtmp - x[j][0]; const double dely = ytmp - x[j][1]; const double delz = ztmp - x[j][2]; const double rsq = delx * delx + dely * dely + delz * delz; if (rsq < cutsq[itype][jtype]) { const double r = sqrt(rsq); const int idx = type2expression[itype][jtype]; if (has_ref[idx]) pairforce[idx].getVariableReference("r") = r; const double fpair = -pairforce[idx].evaluate() / r * factor_lj; fxtmp += delx * fpair; fytmp += dely * fpair; fztmp += delz * fpair; if (NEWTON_PAIR || (j < nlocal)) { f[j][0] -= delx * fpair; f[j][1] -= dely * fpair; f[j][2] -= delz * fpair; } double evdwl = 0.0; if (EFLAG) { try { pairpot[idx].getVariableReference("r") = r; } catch (Lepton::Exception &) { ; // ignore -> constant potential } evdwl = pairpot[idx].evaluate() - offset[itype][jtype]; evdwl *= factor_lj; } if (EVFLAG) ev_tally(i, j, nlocal, NEWTON_PAIR, evdwl, 0.0, fpair, delx, dely, delz); } } f[i][0] += fxtmp; f[i][1] += fytmp; f[i][2] += fztmp; } } /* ---------------------------------------------------------------------- allocate all arrays ------------------------------------------------------------------------- */ void PairLepton::allocate() { allocated = 1; int np1 = atom->ntypes + 1; memory->create(setflag, np1, np1, "pair:setflag"); for (int i = 1; i < np1; i++) for (int j = i; j < np1; j++) setflag[i][j] = 0; memory->create(cut, np1, np1, "pair:cut"); memory->create(cutsq, np1, np1, "pair:cutsq"); memory->create(type2expression, np1, np1, "pair:type2expression"); memory->create(offset, np1, np1, "pair:offset"); } /* ---------------------------------------------------------------------- global settings ------------------------------------------------------------------------- */ void PairLepton::settings(int narg, char **arg) { if (narg != 1) error->all(FLERR, "Incorrect number of arguments for pair_style lepton command"); cut_global = utils::numeric(FLERR, arg[0], false, lmp); } /* ---------------------------------------------------------------------- set coeffs for all type pairs ------------------------------------------------------------------------- */ void PairLepton::coeff(int narg, char **arg) { if (narg < 3 || narg > 4) error->all(FLERR, "Incorrect number of args for pair coefficients"); if (!allocated) allocate(); int ilo, ihi, jlo, jhi; utils::bounds(FLERR, arg[0], 1, atom->ntypes, ilo, ihi, error); utils::bounds(FLERR, arg[1], 1, atom->ntypes, jlo, jhi, error); double cut_one = cut_global; if (narg == 4) { if (pppmflag || ewaldflag || msmflag || dispersionflag || tip4pflag) { error->all(FLERR, "Only a global cutoff is allowed with Kspace compatibility enabled"); } else { cut_one = utils::numeric(FLERR, arg[3], false, lmp); } } // remove whitespace and quotes from expression string and then // check if the expression can be parsed and evaluated without error auto exp_one = LeptonUtils::condense(arg[2]); try { auto parsed = Lepton::Parser::parse(LeptonUtils::substitute(exp_one, lmp), functions); auto pairforce = parsed.differentiate("r").createCompiledExpression(); auto pairpot = parsed.createCompiledExpression(); try { pairpot.getVariableReference("r") = 1.0; pairforce.getVariableReference("r") = 1.0; } catch (Lepton::Exception &) { ; // ignore -> constant potential or force } pairpot.evaluate(); pairforce.evaluate(); } catch (std::exception &e) { error->all(FLERR, e.what()); } std::size_t idx = 0; for (const auto &exp : expressions) { if (exp == exp_one) break; ++idx; } // not found, add to list if ((expressions.size() == 0) || (idx == expressions.size())) expressions.push_back(exp_one); int count = 0; for (int i = ilo; i <= ihi; i++) { for (int j = MAX(jlo, i); j <= jhi; j++) { cut[i][j] = cut_one; setflag[i][j] = 1; type2expression[i][j] = idx; count++; } } if (count == 0) error->all(FLERR, "Incorrect args for pair coefficients"); } /* ---------------------------------------------------------------------- */ double PairLepton::init_one(int i, int j) { if (setflag[i][j] == 0) error->all(FLERR, "All pair coeffs are not set"); offset[i][j] = 0.0; if (offset_flag) { try { auto expr = LeptonUtils::substitute(expressions[type2expression[i][j]], lmp); auto pairpot = Lepton::Parser::parse(expr, functions).createCompiledExpression(); try { pairpot.getVariableReference("r") = cut[i][j]; } catch (Lepton::Exception &) { ; // ignore -> constant potential } offset[i][j] = pairpot.evaluate(); } catch (std::exception &) { } } cut[j][i] = cut[i][j]; type2expression[j][i] = type2expression[i][j]; offset[j][i] = offset[i][j]; return cut[i][j]; } /* ---------------------------------------------------------------------- proc 0 writes to restart file ------------------------------------------------------------------------- */ void PairLepton::write_restart(FILE *fp) { write_restart_settings(fp); for (int i = 1; i <= atom->ntypes; i++) for (int j = i; j <= atom->ntypes; j++) { fwrite(&setflag[i][j], sizeof(int), 1, fp); if (setflag[i][j]) { fwrite(&cut[i][j], sizeof(double), 1, fp); fwrite(&type2expression[i][j], sizeof(int), 1, fp); } } int num = expressions.size(); int maxlen = 0; for (const auto &exp : expressions) maxlen = MAX(maxlen, (int) exp.size()); ++maxlen; fwrite(&num, sizeof(int), 1, fp); fwrite(&maxlen, sizeof(int), 1, fp); for (const auto &exp : expressions) { int n = exp.size() + 1; fwrite(&n, sizeof(int), 1, fp); fwrite(exp.c_str(), sizeof(char), n, fp); } } /* ---------------------------------------------------------------------- proc 0 reads from restart file, bcasts ------------------------------------------------------------------------- */ void PairLepton::read_restart(FILE *fp) { read_restart_settings(fp); allocate(); expressions.clear(); const int me = comm->me; for (int i = 1; i <= atom->ntypes; i++) for (int j = i; j <= atom->ntypes; j++) { if (me == 0) utils::sfread(FLERR, &setflag[i][j], sizeof(int), 1, fp, nullptr, error); MPI_Bcast(&setflag[i][j], 1, MPI_INT, 0, world); if (setflag[i][j]) { if (me == 0) { utils::sfread(FLERR, &cut[i][j], sizeof(double), 1, fp, nullptr, error); utils::sfread(FLERR, &type2expression[i][j], sizeof(int), 1, fp, nullptr, error); } MPI_Bcast(&cut[i][j], 1, MPI_DOUBLE, 0, world); MPI_Bcast(&type2expression[i][j], 1, MPI_INT, 0, world); } } int num, maxlen, len; if (me == 0) { utils::sfread(FLERR, &num, sizeof(int), 1, fp, nullptr, error); utils::sfread(FLERR, &maxlen, sizeof(int), 1, fp, nullptr, error); } MPI_Bcast(&num, 1, MPI_INT, 0, world); MPI_Bcast(&maxlen, 1, MPI_INT, 0, world); char *buf = new char[maxlen]; for (int i = 0; i < num; ++i) { if (me == 0) { utils::sfread(FLERR, &len, sizeof(int), 1, fp, nullptr, error); utils::sfread(FLERR, buf, sizeof(char), len, fp, nullptr, error); } MPI_Bcast(buf, maxlen, MPI_CHAR, 0, world); expressions.emplace_back(buf); } delete[] buf; } /* ---------------------------------------------------------------------- proc 0 writes to restart file ------------------------------------------------------------------------- */ void PairLepton::write_restart_settings(FILE *fp) { fwrite(&cut_global, sizeof(double), 1, fp); fwrite(&offset_flag, sizeof(int), 1, fp); } /* ---------------------------------------------------------------------- proc 0 reads from restart file, bcasts ------------------------------------------------------------------------- */ void PairLepton::read_restart_settings(FILE *fp) { if (comm->me == 0) { utils::sfread(FLERR, &cut_global, sizeof(double), 1, fp, nullptr, error); utils::sfread(FLERR, &offset_flag, sizeof(int), 1, fp, nullptr, error); } MPI_Bcast(&cut_global, 1, MPI_DOUBLE, 0, world); MPI_Bcast(&offset_flag, 1, MPI_INT, 0, world); } /* ---------------------------------------------------------------------- proc 0 writes to data file ------------------------------------------------------------------------- */ void PairLepton::write_data(FILE *fp) { if (pppmflag || ewaldflag || msmflag || dispersionflag || tip4pflag) { for (int i = 1; i <= atom->ntypes; i++) fprintf(fp, "%d %s\n", i, expressions[type2expression[i][i]].c_str()); } else { for (int i = 1; i <= atom->ntypes; i++) fprintf(fp, "%d %s %g\n", i, expressions[type2expression[i][i]].c_str(), cut[i][i]); } } /* ---------------------------------------------------------------------- proc 0 writes all pairs to data file ------------------------------------------------------------------------- */ void PairLepton::write_data_all(FILE *fp) { if (pppmflag || ewaldflag || msmflag || dispersionflag || tip4pflag) { for (int i = 1; i <= atom->ntypes; i++) for (int j = i; j <= atom->ntypes; j++) fprintf(fp, "%d %d %s\n", i, j, expressions[type2expression[i][j]].c_str()); } else { for (int i = 1; i <= atom->ntypes; i++) for (int j = i; j <= atom->ntypes; j++) fprintf(fp, "%d %d %s %g\n", i, j, expressions[type2expression[i][j]].c_str(), cut[i][j]); } } /* ---------------------------------------------------------------------- */ double PairLepton::single(int /* i */, int /* j */, int itype, int jtype, double rsq, double /* factor_coul */, double factor_lj, double &fforce) { const auto &expr = expressions[type2expression[itype][jtype]]; auto parsed = Lepton::Parser::parse(LeptonUtils::substitute(expr, lmp), functions); auto pairpot = parsed.createCompiledExpression(); auto pairforce = parsed.differentiate("r").createCompiledExpression(); const double r = sqrt(rsq); try { pairpot.getVariableReference("r") = r; pairforce.getVariableReference("r") = r; } catch (Lepton::Exception &) { ; // ignore -> constant potential or force } fforce = -pairforce.evaluate() / r * factor_lj; return (pairpot.evaluate() - offset[itype][jtype]) * factor_lj; }