/* ---------------------------------------------------------------------- LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator http://lammps.sandia.gov, Sandia National Laboratories Steve Plimpton, sjplimp@sandia.gov Copyright (2003) Sandia Corporation. Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains certain rights in this software. This software is distributed under the GNU General Public License. See the README file in the top-level LAMMPS directory. ------------------------------------------------------------------------- */ /* ---------------------------------------------------------------------- Contributing author: Mike Brown (SNL) ------------------------------------------------------------------------- */ #include "string.h" #include "stdlib.h" #include "math.h" #include "fix_npt_asphere.h" #include "math_extra.h" #include "atom.h" #include "atom_vec.h" #include "force.h" #include "compute.h" #include "kspace.h" #include "update.h" #include "domain.h" #include "memory.h" #include "error.h" using namespace LAMMPS_NS; enum{NOBIAS,BIAS}; /* ---------------------------------------------------------------------- */ FixNPTAsphere::FixNPTAsphere(LAMMPS *lmp, int narg, char **arg) : FixNPT(lmp, narg, arg) { inertia = memory->create_2d_double_array(atom->ntypes+1,3,"fix_npt_asphere:inertia"); // error checks if (!atom->quat_flag || !atom->angmom_flag || !atom->torque_flag || !atom->avec->shape_type) error->all("Fix npt/asphere requires atom attributes " "quat, angmom, torque, shape"); if (atom->radius_flag || atom->rmass_flag) error->all("Fix npt/asphere cannot be used with atom attributes " "diameter or rmass"); } /* ---------------------------------------------------------------------- */ FixNPTAsphere::~FixNPTAsphere() { memory->destroy_2d_double_array(inertia); } /* ---------------------------------------------------------------------- */ void FixNPTAsphere::init() { // check that all particles are finite-size // no point particles allowed, spherical is OK double **shape = atom->shape; int *type = atom->type; int *mask = atom->mask; int nlocal = atom->nlocal; if (igroup == atom->firstgroup) nlocal = atom->nfirst; for (int i = 0; i < nlocal; i++) if (mask[i] & groupbit) if (shape[type[i]][0] == 0.0) error->one("Fix nvt/asphere requires extended particles"); FixNPT::init(); calculate_inertia(); } /* ---------------------------------------------------------------------- */ void FixNPTAsphere::initial_integrate(int vflag) { int i; double dtfm; double delta = update->ntimestep - update->beginstep; delta /= update->endstep - update->beginstep; // update eta_dot t_target = t_start + delta * (t_stop-t_start); f_eta = t_freq*t_freq * (t_current/t_target - 1.0); eta_dot += f_eta*dthalf; eta_dot *= drag_factor; eta += dtv*eta_dot; // update omega_dot // for non-varying dims, p_freq is 0.0, so omega_dot doesn't change double f_omega,volume; if (dimension == 3) volume = domain->xprd*domain->yprd*domain->zprd; else volume = domain->xprd*domain->yprd; double denskt = atom->natoms*boltz*t_target / volume * nktv2p; for (i = 0; i < 3; i++) { p_target[i] = p_start[i] + delta * (p_stop[i]-p_start[i]); f_omega = p_freq[i]*p_freq[i] * (p_current[i]-p_target[i])/denskt; omega_dot[i] += f_omega*dthalf; omega_dot[i] *= drag_factor; omega[i] += dtv*omega_dot[i]; factor[i] = exp(-dthalf*(eta_dot+omega_dot[i])); dilation[i] = exp(dthalf*omega_dot[i]); } factor_rotate = exp(-dthalf*eta_dot); // update v of atoms in group // for BIAS: // calculate temperature since some computes require temp // computed on current nlocal atoms to remove bias // OK to not test returned v = 0, since factor is multiplied by v double **x = atom->x; double **v = atom->v; double **f = atom->f; double **quat = atom->quat; double **angmom = atom->angmom; double **torque = atom->torque; double *mass = atom->mass; int *type = atom->type; int *mask = atom->mask; int nlocal = atom->nlocal; if (igroup == atom->firstgroup) nlocal = atom->nfirst; if (which == NOBIAS) { for (i = 0; i < nlocal; i++) { if (mask[i] & groupbit) { dtfm = dtf / mass[type[i]]; v[i][0] = v[i][0]*factor[0] + dtfm*f[i][0]; v[i][1] = v[i][1]*factor[1] + dtfm*f[i][1]; v[i][2] = v[i][2]*factor[2] + dtfm*f[i][2]; } } } else { double tmp = temperature->compute_scalar(); for (i = 0; i < nlocal; i++) { if (mask[i] & groupbit) { temperature->remove_bias(i,v[i]); dtfm = dtf / mass[type[i]]; v[i][0] = v[i][0]*factor[0] + dtfm*f[i][0]; v[i][1] = v[i][1]*factor[1] + dtfm*f[i][1]; v[i][2] = v[i][2]*factor[2] + dtfm*f[i][2]; temperature->restore_bias(i,v[i]); } } } // remap simulation box and all owned atoms by 1/2 step remap(0); // update x by full step for atoms in group for (i = 0; i < nlocal; i++) { if (mask[i] & groupbit) { x[i][0] += dtv * v[i][0]; x[i][1] += dtv * v[i][1]; x[i][2] += dtv * v[i][2]; } } // set timestep here since dt may have changed or come via rRESPA dtq = 0.5 * dtv; // update angular momentum by 1/2 step for atoms in group // update quaternion a full step via Richardson iteration // returns new normalized quaternion for (i = 0; i < nlocal; i++) { if (mask[i] & groupbit) { angmom[i][0] = angmom[i][0]*factor_rotate + dtf*torque[i][0]; angmom[i][1] = angmom[i][1]*factor_rotate + dtf*torque[i][1]; angmom[i][2] = angmom[i][2]*factor_rotate + dtf*torque[i][2]; richardson(quat[i],angmom[i],inertia[type[i]]); } } // remap simulation box and all owned atoms by 1/2 step // redo KSpace coeffs since volume has changed remap(0); if (kspace_flag) force->kspace->setup(); } /* ---------------------------------------------------------------------- */ void FixNPTAsphere::final_integrate() { int i; double dtfm; // update v,angmom of atoms in group // for BIAS: // calculate temperature since some computes require temp // computed on current nlocal atoms to remove bias // OK to not test returned v = 0, since factor is multiplied by v double **v = atom->v; double **f = atom->f; double **angmom = atom->angmom; double **torque = atom->torque; double *mass = atom->mass; int *type = atom->type; int *mask = atom->mask; int nlocal = atom->nlocal; if (igroup == atom->firstgroup) nlocal = atom->nfirst; if (which == NOBIAS) { for (i = 0; i < nlocal; i++) { if (mask[i] & groupbit) { dtfm = dtf / mass[type[i]]; v[i][0] = (v[i][0] + dtfm*f[i][0]) * factor[0]; v[i][1] = (v[i][1] + dtfm*f[i][1]) * factor[1]; v[i][2] = (v[i][2] + dtfm*f[i][2]) * factor[2]; angmom[i][0] = (angmom[i][0] + dtf * torque[i][0]) * factor_rotate; angmom[i][1] = (angmom[i][1] + dtf * torque[i][1]) * factor_rotate; angmom[i][2] = (angmom[i][2] + dtf * torque[i][2]) * factor_rotate; } } } else { double tmp = temperature->compute_scalar(); for (i = 0; i < nlocal; i++) { if (mask[i] & groupbit) { temperature->remove_bias(i,v[i]); dtfm = dtf / mass[type[i]]; v[i][0] = (v[i][0] + dtfm*f[i][0]) * factor[0]; v[i][1] = (v[i][1] + dtfm*f[i][1]) * factor[1]; v[i][2] = (v[i][2] + dtfm*f[i][2]) * factor[2]; temperature->restore_bias(i,v[i]); angmom[i][0] = (angmom[i][0] + dtf * torque[i][0]) * factor_rotate; angmom[i][1] = (angmom[i][1] + dtf * torque[i][1]) * factor_rotate; angmom[i][2] = (angmom[i][2] + dtf * torque[i][2]) * factor_rotate; } } } // compute new T,P t_current = temperature->compute_scalar(); if (press_couple == 0) { double tmp = pressure->compute_scalar(); } else { temperature->compute_vector(); pressure->compute_vector(); } couple(); // trigger virial computation on next timestep pressure->addstep(update->ntimestep+1); // update eta_dot f_eta = t_freq*t_freq * (t_current/t_target - 1.0); eta_dot += f_eta*dthalf; eta_dot *= drag_factor; // update omega_dot // for non-varying dims, p_freq is 0.0, so omega_dot doesn't change double f_omega,volume; if (dimension == 3) volume = domain->xprd*domain->yprd*domain->zprd; else volume = domain->xprd*domain->yprd; double denskt = atom->natoms*boltz*t_target / volume * nktv2p; for (i = 0; i < 3; i++) { f_omega = p_freq[i]*p_freq[i] * (p_current[i]-p_target[i])/denskt; omega_dot[i] += f_omega*dthalf; omega_dot[i] *= drag_factor; } } /* ---------------------------------------------------------------------- Richardson iteration to update quaternion accurately ------------------------------------------------------------------------- */ void FixNPTAsphere::richardson(double *q, double *m, double *moments) { // compute omega at 1/2 step from m at 1/2 step and q at 0 double w[3]; omega_from_mq(q,m,moments,w); // full update from dq/dt = 1/2 w q double wq[4]; MathExtra::multiply_vec_quat(w,q,wq); double qfull[4]; qfull[0] = q[0] + dtq * wq[0]; qfull[1] = q[1] + dtq * wq[1]; qfull[2] = q[2] + dtq * wq[2]; qfull[3] = q[3] + dtq * wq[3]; MathExtra::normalize4(qfull); // 1st half of update from dq/dt = 1/2 w q double qhalf[4]; qhalf[0] = q[0] + 0.5*dtq * wq[0]; qhalf[1] = q[1] + 0.5*dtq * wq[1]; qhalf[2] = q[2] + 0.5*dtq * wq[2]; qhalf[3] = q[3] + 0.5*dtq * wq[3]; MathExtra::normalize4(qhalf); // re-compute omega at 1/2 step from m at 1/2 step and q at 1/2 step // recompute wq omega_from_mq(qhalf,m,moments,w); MathExtra::multiply_vec_quat(w,qhalf,wq); // 2nd half of update from dq/dt = 1/2 w q qhalf[0] += 0.5*dtq * wq[0]; qhalf[1] += 0.5*dtq * wq[1]; qhalf[2] += 0.5*dtq * wq[2]; qhalf[3] += 0.5*dtq * wq[3]; MathExtra::normalize4(qhalf); // corrected Richardson update q[0] = 2.0*qhalf[0] - qfull[0]; q[1] = 2.0*qhalf[1] - qfull[1]; q[2] = 2.0*qhalf[2] - qfull[2]; q[3] = 2.0*qhalf[3] - qfull[3]; MathExtra::normalize4(q); } /* ---------------------------------------------------------------------- compute omega from angular momentum w = omega = angular velocity in space frame wbody = angular velocity in body frame project space-frame angular momentum onto body axes and divide by principal moments ------------------------------------------------------------------------- */ void FixNPTAsphere::omega_from_mq(double *q, double *m, double *inertia, double *w) { double rot[3][3]; MathExtra::quat_to_mat(q,rot); double wbody[3]; MathExtra::transpose_times_column3(rot,m,wbody); wbody[0] /= inertia[0]; wbody[1] /= inertia[1]; wbody[2] /= inertia[2]; MathExtra::times_column3(rot,wbody,w); } /* ---------------------------------------------------------------------- principal moments of inertia for ellipsoids ------------------------------------------------------------------------- */ void FixNPTAsphere::calculate_inertia() { double *mass = atom->mass; double **shape = atom->shape; for (int i = 1; i <= atom->ntypes; i++) { inertia[i][0] = 0.2*mass[i] * (shape[i][1]*shape[i][1]+shape[i][2]*shape[i][2]); inertia[i][1] = 0.2*mass[i] * (shape[i][0]*shape[i][0]+shape[i][2]*shape[i][2]); inertia[i][2] = 0.2*mass[i] * (shape[i][0]*shape[i][0]+shape[i][1]*shape[i][1]); } }