/* ---------------------------------------------------------------------- LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator http://lammps.sandia.gov, Sandia National Laboratories Steve Plimpton, sjplimp@sandia.gov This software is distributed under the GNU General Public License. See the README file in the top-level LAMMPS directory. ------------------------------------------------------------------------- */ /* ---------------------------------------------------------------------- Special Angle Potential for the CMM coarse grained MD potentials. Contributing author: Axel Kohlmeyer ------------------------------------------------------------------------- */ #include "math.h" #include "stdlib.h" #include "angle_cg_cmm.h" #include "atom.h" #include "neighbor.h" #include "domain.h" #include "comm.h" #include "force.h" #include "memory.h" #include "error.h" using namespace LAMMPS_NS; #define SMALL 0.001 /* ---------------------------------------------------------------------- */ AngleCGCMM::AngleCGCMM(LAMMPS *lmp) : Angle(lmp) {} /* ---------------------------------------------------------------------- */ AngleCGCMM::~AngleCGCMM() { if (allocated) { memory->sfree(setflag); memory->sfree(k); memory->sfree(theta0); memory->sfree(cg_type); memory->sfree(epsilon); memory->sfree(sigma); memory->sfree(rcut); } } /* ---------------------------------------------------------------------- */ void AngleCGCMM::ev_tally_lj13(int i, int j, int nlocal, int newton_bond, double evdwl, double fpair, double delx, double dely, double delz) { double v[6]; if (eflag_either) { if (eflag_global) { if (newton_bond) { energy += evdwl; } else { if (i < nlocal) energy += 0.5*evdwl; if (j < nlocal) energy += 0.5*evdwl; } } if (eflag_atom) { if (newton_bond || i < nlocal) eatom[i] += 0.5*evdwl; if (newton_bond || j < nlocal) eatom[i] += 0.5*evdwl; } } if (vflag_either) { v[0] = delx*delx*fpair; v[1] = dely*dely*fpair; v[2] = delz*delz*fpair; v[3] = delx*dely*fpair; v[4] = delx*delz*fpair; v[5] = dely*delz*fpair; if (vflag_global) { if (newton_bond) { virial[0] += v[0]; virial[1] += v[1]; virial[2] += v[2]; virial[3] += v[3]; virial[4] += v[4]; virial[5] += v[5]; } else { if (i < nlocal) { virial[0] += 0.5*v[0]; virial[1] += 0.5*v[1]; virial[2] += 0.5*v[2]; virial[3] += 0.5*v[3]; virial[4] += 0.5*v[4]; virial[5] += 0.5*v[5]; } if (j < nlocal) { virial[0] += 0.5*v[0]; virial[1] += 0.5*v[1]; virial[2] += 0.5*v[2]; virial[3] += 0.5*v[3]; virial[4] += 0.5*v[4]; virial[5] += 0.5*v[5]; } } } if (vflag_atom) { if (newton_bond || i < nlocal) { vatom[i][0] += 0.5*v[0]; vatom[i][1] += 0.5*v[1]; vatom[i][2] += 0.5*v[2]; vatom[i][3] += 0.5*v[3]; vatom[i][4] += 0.5*v[4]; vatom[i][5] += 0.5*v[5]; } if (newton_bond || j < nlocal) { vatom[j][0] += 0.5*v[0]; vatom[j][1] += 0.5*v[1]; vatom[j][2] += 0.5*v[2]; vatom[j][3] += 0.5*v[3]; vatom[j][4] += 0.5*v[4]; vatom[j][5] += 0.5*v[5]; } } } } /* ---------------------------------------------------------------------- */ void AngleCGCMM::compute(int eflag, int vflag) { int i1,i2,i3,n,type; double delx1,dely1,delz1,delx2,dely2,delz2,delx3,dely3,delz3; double eangle,f1[3],f3[3],e13,f13; double dtheta,tk; double rsq1,rsq2,rsq3,r1,r2,r3,c,s,a,a11,a12,a22; eangle = 0.0; if (eflag || vflag) ev_setup(eflag,vflag); else evflag = 0; double **x = atom->x; double **f = atom->f; int **anglelist = neighbor->anglelist; int nanglelist = neighbor->nanglelist; int nlocal = atom->nlocal; int newton_bond = force->newton_bond; for (n = 0; n < nanglelist; n++) { i1 = anglelist[n][0]; i2 = anglelist[n][1]; i3 = anglelist[n][2]; type = anglelist[n][3]; // 1st bond delx1 = x[i1][0] - x[i2][0]; dely1 = x[i1][1] - x[i2][1]; delz1 = x[i1][2] - x[i2][2]; domain->minimum_image(delx1,dely1,delz1); rsq1 = delx1*delx1 + dely1*dely1 + delz1*delz1; r1 = sqrt(rsq1); // 2nd bond delx2 = x[i3][0] - x[i2][0]; dely2 = x[i3][1] - x[i2][1]; delz2 = x[i3][2] - x[i2][2]; domain->minimum_image(delx2,dely2,delz2); rsq2 = delx2*delx2 + dely2*dely2 + delz2*delz2; r2 = sqrt(rsq2); // angle (cos and sin) c = delx1*delx2 + dely1*dely2 + delz1*delz2; c /= r1*r2; if (c > 1.0) c = 1.0; if (c < -1.0) c = -1.0; s = sqrt(1.0 - c*c); if (s < SMALL) s = SMALL; s = 1.0/s; // 1-3 LJ interaction. // we only want to use the repulsive part, // so this has to be done here and not in the // general non-bonded code. delx3 = x[i1][0] - x[i3][0]; dely3 = x[i1][1] - x[i3][1]; delz3 = x[i1][2] - x[i3][2]; domain->minimum_image(delx3,dely3,delz3); rsq3 = delx3*delx3 + dely3*dely3 + delz3*delz3; r3 = sqrt(rsq3); f13=0.0; e13=0.0; if (r3 < rcut[type]) { const int cgt = cg_type[type]; const double cgpow1 = cg_pow1[cgt]; const double cgpow2 = cg_pow2[cgt]; const double cgpref = cg_prefact[cgt]; const double ratio = sigma[type]/r3; const double eps = epsilon[type]; f13 = cgpref*eps / rsq3 * (cgpow1*pow(ratio,cgpow1) - cgpow2*pow(ratio,cgpow2)); if (eflag) e13 = eps + cgpref*eps * (pow(ratio,cgpow1) - pow(ratio,cgpow2)); } // force & energy dtheta = acos(c) - theta0[type]; tk = k[type] * dtheta; if (eflag) eangle = tk*dtheta; a = -2.0 * tk * s; a11 = a*c / rsq1; a12 = -a / (r1*r2); a22 = a*c / rsq2; f1[0] = a11*delx1 + a12*delx2; f1[1] = a11*dely1 + a12*dely2; f1[2] = a11*delz1 + a12*delz2; f3[0] = a22*delx2 + a12*delx1; f3[1] = a22*dely2 + a12*dely1; f3[2] = a22*delz2 + a12*delz1; // apply force to each of 3 atoms if (newton_bond || i1 < nlocal) { f[i1][0] += f1[0] + f13*delx3; f[i1][1] += f1[1] + f13*dely3; f[i1][2] += f1[2] + f13*delz3; } if (newton_bond || i2 < nlocal) { f[i2][0] -= f1[0] + f3[0]; f[i2][1] -= f1[1] + f3[1]; f[i2][2] -= f1[2] + f3[2]; } if (newton_bond || i3 < nlocal) { f[i3][0] += f3[0] - f13*delx3; f[i3][1] += f3[1] - f13*dely3; f[i3][2] += f3[2] - f13*delz3; } if (evflag) ev_tally(i1,i2,i3,nlocal,newton_bond,eangle,f1,f3, delx1,dely1,delz1,delx2,dely2,delz2); if (evflag) ev_tally_lj13(i1,i3,nlocal,newton_bond, e13,f13,delx3,dely3,delz3); } } /* ---------------------------------------------------------------------- */ void AngleCGCMM::allocate() { allocated = 1; int n = atom->nangletypes; k = (double *) memory->smalloc((n+1)*sizeof(double),"angle:k"); theta0 = (double *) memory->smalloc((n+1)*sizeof(double),"angle:theta0"); epsilon = (double *) memory->smalloc((n+1)*sizeof(double),"angle:epsilon"); sigma = (double *) memory->smalloc((n+1)*sizeof(double),"angle:sigma"); rcut = (double *) memory->smalloc((n+1)*sizeof(double),"angle:rcut"); cg_type = (int *) memory->smalloc((n+1)*sizeof(int),"angle:cg_type"); setflag = (int *) memory->smalloc((n+1)*sizeof(int),"angle:setflag"); for (int i = 1; i <= n; i++) { cg_type[i] = CG_NOT_SET; setflag[i] = 0; } } /* ---------------------------------------------------------------------- set coeffs for one or more types ------------------------------------------------------------------------- */ void AngleCGCMM::coeff(int which, int narg, char **arg) { if (which > 0) return; if (narg != 6) error->all("Incorrect args for angle coefficients"); if (!allocated) allocate(); int ilo,ihi; force->bounds(arg[0],atom->nangletypes,ilo,ihi); double k_one = atof(arg[1]); double theta0_one = atof(arg[2]); int cg_type_one=find_cg_type(arg[3]); if (cg_type_one == CG_NOT_SET) error->all("Error reading CG type flag."); double epsilon_one = atof(arg[4]); double sigma_one = atof(arg[5]); // find minimum of LJ potential. we only want to include // the repulsive part of the 1-3 LJ. double rcut_one = sigma_one*exp( 1.0/(cg_pow1[cg_type_one]-cg_pow2[cg_type_one]) *log(cg_pow1[cg_type_one]/cg_pow2[cg_type_one]) ); int count = 0; for (int i = ilo; i <= ihi; i++) { k[i] = k_one; // convert theta0 from degrees to radians theta0[i] = theta0_one/180.0 * PI; epsilon[i] = epsilon_one; sigma[i] = sigma_one; rcut[i] = rcut_one; cg_type[i] = cg_type_one; setflag[i] = 1; count++; } if (count == 0) error->all("Incorrect args for angle coefficients"); } /* ---------------------------------------------------------------------- */ double AngleCGCMM::equilibrium_angle(int i) { return theta0[i]; } /* ---------------------------------------------------------------------- proc 0 writes out coeffs to restart file ------------------------------------------------------------------------- */ void AngleCGCMM::write_restart(FILE *fp) { fwrite(&k[1],sizeof(double),atom->nangletypes,fp); fwrite(&theta0[1],sizeof(double),atom->nangletypes,fp); fwrite(&epsilon[1],sizeof(double),atom->nangletypes,fp); fwrite(&sigma[1],sizeof(double),atom->nangletypes,fp); fwrite(&rcut[1],sizeof(double),atom->nangletypes,fp); fwrite(&cg_type[1],sizeof(int),atom->nangletypes,fp); } /* ---------------------------------------------------------------------- proc 0 reads coeffs from restart file, bcasts them ------------------------------------------------------------------------- */ void AngleCGCMM::read_restart(FILE *fp) { allocate(); if (comm->me == 0) { fread(&k[1],sizeof(double),atom->nangletypes,fp); fread(&theta0[1],sizeof(double),atom->nangletypes,fp); fread(&epsilon[1],sizeof(double),atom->nangletypes,fp); fread(&sigma[1],sizeof(double),atom->nangletypes,fp); fread(&rcut[1],sizeof(double),atom->nangletypes,fp); fread(&cg_type[1],sizeof(int),atom->nangletypes,fp); } MPI_Bcast(&k[1],atom->nangletypes,MPI_DOUBLE,0,world); MPI_Bcast(&theta0[1],atom->nangletypes,MPI_DOUBLE,0,world); MPI_Bcast(&epsilon[1],atom->nangletypes,MPI_DOUBLE,0,world); MPI_Bcast(&sigma[1],atom->nangletypes,MPI_DOUBLE,0,world); MPI_Bcast(&rcut[1],atom->nangletypes,MPI_DOUBLE,0,world); MPI_Bcast(&cg_type[1],atom->nangletypes,MPI_INT,0,world); for (int i = 1; i <= atom->nangletypes; i++) setflag[i] = 1; } /* ---------------------------------------------------------------------- */ double AngleCGCMM::single(int type, int i1, int i2, int i3) { double **x = atom->x; double delx1 = x[i1][0] - x[i2][0]; double dely1 = x[i1][1] - x[i2][1]; double delz1 = x[i1][2] - x[i2][2]; domain->minimum_image(delx1,dely1,delz1); double r1 = sqrt(delx1*delx1 + dely1*dely1 + delz1*delz1); double delx2 = x[i3][0] - x[i2][0]; double dely2 = x[i3][1] - x[i2][1]; double delz2 = x[i3][2] - x[i2][2]; domain->minimum_image(delx2,dely2,delz2); double r2 = sqrt(delx2*delx2 + dely2*dely2 + delz2*delz2); double c = delx1*delx2 + dely1*dely2 + delz1*delz2; c /= r1*r2; if (c > 1.0) c = 1.0; if (c < -1.0) c = -1.0; // 1-3 LJ interaction. double delx3 = x[i1][0] - x[i3][0]; double dely3 = x[i1][1] - x[i3][1]; double delz3 = x[i1][2] - x[i3][2]; domain->minimum_image(delx3,dely3,delz3); const double r3 = sqrt(delx3*delx3 + dely3*dely3 + delz3*delz3); double e13=0.0; if (r3 < rcut[type]) { const int cgt = cg_type[type]; const double cgpow1 = cg_pow1[cgt]; const double cgpow2 = cg_pow2[cgt]; const double cgpref = cg_prefact[cgt]; const double ratio = sigma[type]/r3; const double eps = epsilon[type]; e13 = eps + cgpref*eps * (pow(ratio,cgpow1) - pow(ratio,cgpow2)); } double dtheta = acos(c) - theta0[type]; double tk = k[type] * dtheta; return tk*dtheta + e13; }