\documentstyle[12pt]{article} \begin{document} \begin{center} \large{Additional documentation for the RE-squared ellipsoidal potential \\ as implemented in LAMMPS} \end{center} \centerline{Mike Brown, Sandia National Labs, October 2007} \vspace{0.3in} Let the shape matrices $\mathbf{S}_i=\mbox{diag}(a_i, b_i, c_i)$ be given by the ellipsoid radii. Let the relative energy matrices $\mathbf{E}_i = \mbox{diag} (\epsilon_{ia}, \epsilon_{ib}, \epsilon_{ic})$ be given by the relative well depths (dimensionless energy scales inversely proportional to the well-depths of the respective orthogonal configurations of the interacting molecules). Let $\mathbf{A}_1$ and $\mathbf{A}_2$ be the transformation matrices from the simulation box frame to the body frame and $\mathbf{r}$ be the center to center vector between the particles. Let $A_{12}$ be the Hamaker constant for the interaction given in LJ units by $A_{12}=4\pi^2\epsilon_{\mathrm{LJ}}(\rho\sigma^3)^2$. \vspace{0.3in} The RE-squared anisotropic interaction between pairs of ellipsoidal particles is given by $$ U=U_A+U_R, $$ $$ U_\alpha=\frac{A_{12}}{m_\alpha}(\frac\sigma{h})^{n_\alpha} (1+o_\alpha\eta\chi\frac\sigma{h}) \times \prod_i{ \frac{a_ib_ic_i}{(a_i+h/p_\alpha)(b_i+h/p_\alpha)(c_i+h/p_\alpha)}}, $$ $$ m_A=-36, n_A=0, o_A=3, p_A=2, $$ $$ m_R=2025, n_R=6, o_R=45/56, p_R=60^{1/3}, $$ $$ \chi = 2 \hat{\mathbf{r}}^T \mathbf{B}^{-1} \hat{\mathbf{r}}, $$ $$ \hat{\mathbf{r}} = { \mathbf{r} } / |\mathbf{r}|, $$ $$ \mathbf{B} = \mathbf{A}_1^T \mathbf{E}_1 \mathbf{A}_1 + \mathbf{A}_2^T \mathbf{E}_2 \mathbf{A}_2 $$ $$ \eta = \frac{ \det[\mathbf{S}_1]/\sigma_1^2+ det[\mathbf{S}_2]/\sigma_2^2}{[\det[\mathbf{H}]/ (\sigma_1+\sigma_2)]^{1/2}}, $$ $$ \sigma_i = (\hat{\mathbf{r}}^T\mathbf{A}_i^T\mathbf{S}_i^{-2} \mathbf{A}_i\hat{\mathbf{r}})^{-1/2}, $$ $$ \mathbf{H} = \frac{1}{\sigma_1}\mathbf{A}_1^T \mathbf{S}_1^2 \mathbf{A}_1 + \frac{1}{\sigma_2}\mathbf{A}_2^T \mathbf{S}_2^2 \mathbf{A}_2 $$ Here, we use the distance of closest approach approximation given by the Perram reference, namely $$ h = |r| - \sigma_{12}, $$ $$ \sigma_{12} = [ \frac{1}{2} \hat{\mathbf{r}}^T \mathbf{G}^{-1} \hat{\mathbf{r}}]^{ -1/2 }, $$ and $$ \mathbf{G} = \mathbf{A}_1^T \mathbf{S}_1^2 \mathbf{A}_1 + \mathbf{A}_2^T \mathbf{S}_2^2 \mathbf{A}_2 $$ \vspace{0.3in} The RE-squared anisotropic interaction between a ellipsoidal particle and a Lennard-Jones sphere is defined as the $\lim_{a_2->0}U$ under the constraints that $a_2=b_2=c_2$ and $\frac{4}{3}\pi a_2^3\rho=1$: $$ U_{\mathrm{elj}}=U_{A_{\mathrm{elj}}}+U_{R_{\mathrm{elj}}}, $$ $$ U_{\alpha_{\mathrm{elj}}}=(\frac{3\sigma^3c_\alpha^3} {4\pi h_{\mathrm{elj}}^3})\frac{A_{12_{\mathrm{elj}}}} {m_\alpha}(\frac\sigma{h_{\mathrm{elj}}})^{n_\alpha} (1+o_\alpha\chi_{\mathrm{elj}}\frac\sigma{h_{\mathrm{elj}}}) \times \frac{a_1b_1c_1}{(a_1+h_{\mathrm{elj}}/p_\alpha) (b_1+h_{\mathrm{elj}}/p_\alpha)(c_1+h_{\mathrm{elj}}/p_\alpha)}, $$ $$ A_{12_{\mathrm{elj}}}=4\pi^2\epsilon_{\mathrm{LJ}}(\rho\sigma^3), $$ with $h_{\mathrm{elj}}$ and $\chi_{\mathrm{elj}}$ calculated as above by replacing $B$ with $B_{\mathrm{elj}}$ and $G$ with $G_{\mathrm{elj}}$: $$ \mathbf{B}_{\mathrm{elj}} = \mathbf{A}_1^T \mathbf{E}_1 \mathbf{A}_1 + I, $$ $$ \mathbf{G}_{\mathrm{elj}} = \mathbf{A}_1^T \mathbf{S}_1^2 \mathbf{A}_1.$$ \vspace{0.3in} The interaction between two LJ spheres is calculated as: $$ U_{\mathrm{lj}} = 4 \epsilon \left[ \left(\frac{\sigma}{|\mathbf{r}|}\right)^{12} - \left(\frac{\sigma}{|\mathbf{r}|}\right)^6 \right] $$ \vspace{0.3in} The analytic derivatives are used for all force and torque calculation. \end{document}