// clang-format off /* ---------------------------------------------------------------------- LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator https://www.lammps.org/, Sandia National Laboratories LAMMPS development team: developers@lammps.org Copyright (2003) Sandia Corporation. Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains certain rights in this software. This software is distributed under the GNU General Public License. See the README file in the top-level LAMMPS directory. ------------------------------------------------------------------------- */ #include "fix_ave_atom.h" #include "arg_info.h" #include "atom.h" #include "compute.h" #include "error.h" #include "input.h" #include "memory.h" #include "modify.h" #include "update.h" #include "variable.h" #include using namespace LAMMPS_NS; using namespace FixConst; /* ---------------------------------------------------------------------- */ FixAveAtom::FixAveAtom(LAMMPS *lmp, int narg, char **arg) : Fix(lmp, narg, arg), array(nullptr) { if (narg < 7) utils::missing_cmd_args(FLERR, "fix ave/atom", error); nevery = utils::inumeric(FLERR, arg[3], false, lmp); nrepeat = utils::inumeric(FLERR, arg[4], false, lmp); peratom_freq = utils::inumeric(FLERR, arg[5], false, lmp); time_depend = 1; // expand args if any have wildcard character "*" // this can reset nvalues int expand = 0; char **earg; int nvalues = utils::expand_args(FLERR, narg - 6, &arg[6], 1, earg, lmp); if (earg != &arg[6]) expand = 1; arg = earg; // parse values values.clear(); for (int i = 0; i < nvalues; i++) { value_t val; val.id = ""; val.val.c = nullptr; if (strcmp(arg[i], "x") == 0) { val.which = ArgInfo::X; val.argindex = 0; } else if (strcmp(arg[i], "y") == 0) { val.which = ArgInfo::X; val.argindex = 1; } else if (strcmp(arg[i], "z") == 0) { val.which = ArgInfo::X; val.argindex = 2; } else if (strcmp(arg[i], "vx") == 0) { val.which = ArgInfo::V; val.argindex = 0; } else if (strcmp(arg[i], "vy") == 0) { val.which = ArgInfo::V; val.argindex = 1; } else if (strcmp(arg[i], "vz") == 0) { val.which = ArgInfo::V; val.argindex = 2; } else if (strcmp(arg[i], "fx") == 0) { val.which = ArgInfo::F; val.argindex = 0; } else if (strcmp(arg[i], "fy") == 0) { val.which = ArgInfo::F; val.argindex = 1; } else if (strcmp(arg[i], "fz") == 0) { val.which = ArgInfo::F; val.argindex = 2; } else { ArgInfo argi(arg[i]); val.which = argi.get_type(); val.argindex = argi.get_index1(); val.id = argi.get_name(); if ((val.which == ArgInfo::UNKNOWN) || (val.which == ArgInfo::NONE) || (argi.get_dim() > 1)) error->all(FLERR, "Invalid fix ave/atom argument: {}", arg[i]); } values.push_back(val); } // if wildcard expansion occurred, free earg memory from exapnd_args() if (expand) { for (int i = 0; i < nvalues; i++) delete[] earg[i]; memory->sfree(earg); } // setup and error check // for fix inputs, check that fix frequency is acceptable if (nevery <= 0) error->all(FLERR,"Illegal fix ave/atom nevery value: {}", nevery); if (nrepeat <= 0) error->all(FLERR,"Illegal fix ave/atom nrepeat value: {}", nrepeat); if (peratom_freq <= 0) error->all(FLERR,"Illegal fix ave/atom nfreq value: {}", peratom_freq); if (peratom_freq % nevery || nrepeat*nevery > peratom_freq) error->all(FLERR,"Inconsistent fix ave/atom nevery/nrepeat/nfreq values"); for (auto &val : values) { if (val.which == ArgInfo::COMPUTE) { val.val.c = modify->get_compute_by_id(val.id); if (!val.val.c) error->all(FLERR,"Compute ID {} for fix ave/atom does not exist", val.id); if (val.val.c->peratom_flag == 0) error->all(FLERR, "Fix ave/atom compute {} does not calculate per-atom values", val.id); if (val.argindex == 0 && val.val.c->size_peratom_cols != 0) error->all(FLERR,"Fix ave/atom compute {} does not calculate a per-atom vector", val.id); if (val.argindex && val.val.c->size_peratom_cols == 0) error->all(FLERR,"Fix ave/atom compute {} does not calculate a per-atom array", val.id); if (val.argindex && val.argindex > val.val.c->size_peratom_cols) error->all(FLERR,"Fix ave/atom compute {} array is accessed out-of-range", val.id); } else if (val.which == ArgInfo::FIX) { val.val.f = modify->get_fix_by_id(val.id); if (!val.val.f) error->all(FLERR, "Fix ID {} for fix ave/atom does not exist", val.id); if (val.val.f->peratom_flag == 0) error->all(FLERR, "Fix ave/atom fix {} does not calculate per-atom values", val.id); if (val.argindex == 0 && val.val.f->size_peratom_cols != 0) error->all(FLERR, "Fix ave/atom fix {} does not calculate a per-atom vector", val.id); if (val.argindex && val.val.f->size_peratom_cols == 0) error->all(FLERR, "Fix ave/atom fix {} does not calculate a per-atom array", val.id); if (val.argindex && val.argindex > val.val.f->size_peratom_cols) error->all(FLERR,"Fix ave/atom fix {} array is accessed out-of-range", val.id); if (nevery % val.val.f->peratom_freq) error->all(FLERR, "Fix {} for fix ave/atom not computed at compatible time", val.id); } else if (val.which == ArgInfo::VARIABLE) { val.val.v = input->variable->find(val.id.c_str()); if (val.val.v < 0) error->all(FLERR,"Variable name {} for fix ave/atom does not exist", val.id); if (input->variable->atomstyle(val.val.v) == 0) error->all(FLERR,"Fix ave/atom variable {} is not atom-style variable", val.id); } } // this fix produces either a per-atom vector or array peratom_flag = 1; if (values.size() == 1) size_peratom_cols = 0; else size_peratom_cols = values.size(); // perform initial allocation of atom-based array // register with Atom class FixAveAtom::grow_arrays(atom->nmax); atom->add_callback(Atom::GROW); // zero the array since dump may access it on timestep 0 // zero the array since a variable may access it before first run int nlocal = atom->nlocal; for (int i = 0; i < nlocal; i++) for (std::size_t m = 0; m < values.size(); m++) array[i][m] = 0.0; // nvalid = next step on which end_of_step does something // add nvalid to all computes that store invocation times // since don't know a priori which are invoked by this fix // once in end_of_step() can set timestep for ones actually invoked irepeat = 0; nvalid_last = -1; nvalid = nextvalid(); modify->addstep_compute_all(nvalid); } /* ---------------------------------------------------------------------- */ FixAveAtom::~FixAveAtom() { // unregister callback to this fix from Atom class atom->delete_callback(id,Atom::GROW); memory->destroy(array); } /* ---------------------------------------------------------------------- */ int FixAveAtom::setmask() { int mask = 0; mask |= END_OF_STEP; return mask; } /* ---------------------------------------------------------------------- */ void FixAveAtom::init() { // set indices and check validity of all computes,fixes,variables for (auto &val : values) { if (val.which == ArgInfo::COMPUTE) { val.val.c = modify->get_compute_by_id(val.id); if (!val.val.c) error->all(FLERR, "Compute ID {} for fix ave/atom does not exist", val.id); } else if (val.which == ArgInfo::FIX) { val.val.f = modify->get_fix_by_id(val.id); if (!val.val.f) error->all(FLERR, "Fix ID {} for fix ave/atom does not exist", val.id); } else if (val.which == ArgInfo::VARIABLE) { val.val.v = input->variable->find(val.id.c_str()); if (val.val.v < 0) error->all(FLERR,"Variable name {} for fix ave/atom does not exist", val.id); } } // need to reset nvalid if nvalid < ntimestep b/c minimize was performed if (nvalid < update->ntimestep) { irepeat = 0; nvalid = nextvalid(); modify->addstep_compute_all(nvalid); } } /* ---------------------------------------------------------------------- only does something if nvalid = current timestep ------------------------------------------------------------------------- */ void FixAveAtom::setup(int /*vflag*/) { end_of_step(); } /* ---------------------------------------------------------------------- */ void FixAveAtom::end_of_step() { // skip if not step which requires doing something bigint ntimestep = update->ntimestep; if (ntimestep != nvalid) return; nvalid_last = nvalid; // zero if first step int nlocal = atom->nlocal; if (irepeat == 0) for (int i = 0; i < nlocal; i++) for (std::size_t m = 0; m < values.size(); m++) array[i][m] = 0.0; // accumulate results of attributes,computes,fixes,variables to local copy // compute/fix/variable may invoke computes so wrap with clear/add modify->clearstep_compute(); int *mask = atom->mask; int i, j, m = 0; for (auto &val : values) { j = val.argindex; if (val.which == ArgInfo::X) { double **x = atom->x; for (i = 0; i < nlocal; i++) if (mask[i] & groupbit) array[i][m] += x[i][j]; } else if (val.which == ArgInfo::V) { double **v = atom->v; for (i = 0; i < nlocal; i++) if (mask[i] & groupbit) array[i][m] += v[i][j]; } else if (val.which == ArgInfo::F) { double **f = atom->f; for (i = 0; i < nlocal; i++) if (mask[i] & groupbit) array[i][m] += f[i][j]; // invoke compute if not previously invoked } else if (val.which == ArgInfo::COMPUTE) { if (!(val.val.c->invoked_flag & Compute::INVOKED_PERATOM)) { val.val.c->compute_peratom(); val.val.c->invoked_flag |= Compute::INVOKED_PERATOM; } if (j == 0) { double *compute_vector = val.val.c->vector_atom; for (i = 0; i < nlocal; i++) if (mask[i] & groupbit) array[i][m] += compute_vector[i]; } else { int jm1 = j - 1; double **compute_array = val.val.c->array_atom; for (i = 0; i < nlocal; i++) if (mask[i] & groupbit) array[i][m] += compute_array[i][jm1]; } // access fix fields, guaranteed to be ready } else if (val.which == ArgInfo::FIX) { if (j == 0) { double *fix_vector = val.val.f->vector_atom; for (i = 0; i < nlocal; i++) if (mask[i] & groupbit) array[i][m] += fix_vector[i]; } else { int jm1 = j - 1; double **fix_array = val.val.f->array_atom; for (i = 0; i < nlocal; i++) if (mask[i] & groupbit) array[i][m] += fix_array[i][jm1]; } // evaluate atom-style variable // final argument = 1 sums result to array } else if (val.which == ArgInfo::VARIABLE) { if (array) input->variable->compute_atom(val.val.v,igroup,&array[0][m],values.size(),1); else input->variable->compute_atom(val.val.v,igroup,nullptr,values.size(),1); } ++m; } // done if irepeat < nrepeat // else reset irepeat and nvalid irepeat++; if (irepeat < nrepeat) { nvalid += nevery; modify->addstep_compute(nvalid); return; } irepeat = 0; nvalid = ntimestep+peratom_freq - ((bigint)nrepeat-1)*nevery; modify->addstep_compute(nvalid); if (array == nullptr) return; // average the final result for the Nfreq timestep double repeat = nrepeat; for (i = 0; i < nlocal; i++) for (m = 0; m < (int)values.size(); m++) array[i][m] /= repeat; } /* ---------------------------------------------------------------------- memory usage of local atom-based array ------------------------------------------------------------------------- */ double FixAveAtom::memory_usage() { double bytes; bytes = (double)atom->nmax*values.size() * sizeof(double); return bytes; } /* ---------------------------------------------------------------------- allocate atom-based array ------------------------------------------------------------------------- */ void FixAveAtom::grow_arrays(int nmax) { memory->grow(array,nmax,values.size(),"fix_ave/atom:array"); array_atom = array; if (array) vector_atom = array[0]; else vector_atom = nullptr; } /* ---------------------------------------------------------------------- copy values within local atom-based array ------------------------------------------------------------------------- */ void FixAveAtom::copy_arrays(int i, int j, int /*delflag*/) { for (std::size_t m = 0; m < values.size(); m++) array[j][m] = array[i][m]; } /* ---------------------------------------------------------------------- pack values in local atom-based array for exchange with another proc ------------------------------------------------------------------------- */ int FixAveAtom::pack_exchange(int i, double *buf) { for (std::size_t m = 0; m < values.size(); m++) buf[m] = array[i][m]; return values.size(); } /* ---------------------------------------------------------------------- unpack values in local atom-based array from exchange with another proc ------------------------------------------------------------------------- */ int FixAveAtom::unpack_exchange(int nlocal, double *buf) { for (std::size_t m = 0; m < values.size(); m++) array[nlocal][m] = buf[m]; return values.size(); } /* ---------------------------------------------------------------------- calculate nvalid = next step on which end_of_step does something can be this timestep if multiple of nfreq and nrepeat = 1 else backup from next multiple of nfreq ------------------------------------------------------------------------- */ bigint FixAveAtom::nextvalid() { bigint nvalid = (update->ntimestep/peratom_freq)*peratom_freq + peratom_freq; if (nvalid-peratom_freq == update->ntimestep && nrepeat == 1) nvalid = update->ntimestep; else nvalid -= ((bigint)nrepeat-1)*nevery; if (nvalid < update->ntimestep) nvalid += peratom_freq; return nvalid; }