#include "colvarmodule.h" #include "colvarvalue.h" #include "colvarbias.h" colvarbias::colvarbias (std::string const &conf, char const *key) : colvarparse(), has_data (false) { cvm::log ("Initializing a new \""+std::string (key)+"\" instance.\n"); size_t rank = 1; std::string const key_str (key); if (to_lower_cppstr (key_str) == std::string ("abf")) { rank = cvm::n_abf_biases+1; } if (to_lower_cppstr (key_str) == std::string ("harmonic")) { rank = cvm::n_harm_biases+1; } if (to_lower_cppstr (key_str) == std::string ("histogram")) { rank = cvm::n_histo_biases+1; } if (to_lower_cppstr (key_str) == std::string ("metadynamics")) { rank = cvm::n_meta_biases+1; } get_keyval (conf, "name", name, key_str+cvm::to_str (rank)); for (std::vector::iterator bi = cvm::biases.begin(); bi != cvm::biases.end(); bi++) { if ((*bi)->name == this->name) cvm::fatal_error ("Error: this bias cannot have the same name, \""+this->name+ "\", of another bias.\n"); } // lookup the associated colvars std::vector colvars_str; if (get_keyval (conf, "colvars", colvars_str)) { for (size_t i = 0; i < colvars_str.size(); i++) { add_colvar (colvars_str[i]); } } if (!colvars.size()) { cvm::fatal_error ("Error: no collective variables specified.\n"); } get_keyval (conf, "outputEnergy", b_output_energy, false); } colvarbias::colvarbias() : colvarparse(), has_data (false) {} void colvarbias::add_colvar (std::string const &cv_name) { if (colvar *cvp = cvm::colvar_p (cv_name)) { cvp->enable (colvar::task_gradients); if (cvm::debug()) cvm::log ("Applying this bias to collective variable \""+ cvp->name+"\".\n"); colvars.push_back (cvp); colvar_forces.push_back (colvarvalue (cvp->type())); } else { cvm::fatal_error ("Error: cannot find a colvar named \""+ cv_name+"\".\n"); } } void colvarbias::communicate_forces() { for (size_t i = 0; i < colvars.size(); i++) { if (cvm::debug()) { cvm::log ("Communicating a force to colvar \""+ colvars[i]->name+"\", of type \""+ colvarvalue::type_desc[colvars[i]->type()]+"\".\n"); } colvars[i]->add_bias_force (colvar_forces[i]); } } void colvarbias::change_configuration(std::string const &conf) { cvm::fatal_error ("Error: change_configuration() not implemented.\n"); } cvm::real colvarbias::energy_difference(std::string const &conf) { cvm::fatal_error ("Error: energy_difference() not implemented.\n"); return 0.; } std::ostream & colvarbias::write_traj_label (std::ostream &os) { os << " "; if (b_output_energy) os << " E_" << cvm::wrap_string (this->name, cvm::en_width-2); return os; } std::ostream & colvarbias::write_traj (std::ostream &os) { os << " "; if (b_output_energy) os << " " << bias_energy; return os; } colvarbias_harmonic::colvarbias_harmonic (std::string const &conf, char const *key) : colvarbias (conf, key), target_nsteps (0), target_nstages (0) { get_keyval (conf, "forceConstant", force_k, 1.0); for (size_t i = 0; i < colvars.size(); i++) { if (colvars[i]->width != 1.0) cvm::log ("The force constant for colvar \""+colvars[i]->name+ "\" will be rescaled to "+ cvm::to_str (force_k/(colvars[i]->width*colvars[i]->width))+ " according to the specified width.\n"); } // get the initial restraint centers colvar_centers.resize (colvars.size()); colvar_centers_raw.resize (colvars.size()); for (size_t i = 0; i < colvars.size(); i++) { colvar_centers[i].type (colvars[i]->type()); colvar_centers_raw[i].type (colvars[i]->type()); } if (get_keyval (conf, "centers", colvar_centers, colvar_centers)) { for (size_t i = 0; i < colvars.size(); i++) { colvar_centers[i].apply_constraints(); colvar_centers_raw[i] = colvar_centers[i]; } } else { colvar_centers.clear(); cvm::fatal_error ("Error: must define the initial centers of the restraints.\n"); } if (colvar_centers.size() != colvars.size()) cvm::fatal_error ("Error: number of harmonic centers does not match " "that of collective variables.\n"); if (get_keyval (conf, "targetCenters", target_centers, colvar_centers)) { b_chg_centers = true; for (size_t i = 0; i < target_centers.size(); i++) { target_centers[i].apply_constraints(); } } else { b_chg_centers = false; target_centers.clear(); } if (get_keyval (conf, "targetForceConstant", target_force_k, 0.0)) { if (b_chg_centers) cvm::fatal_error ("Error: cannot specify both targetCenters and targetForceConstant.\n"); starting_force_k = force_k; b_chg_force_k = true; get_keyval (conf, "targetEquilSteps", target_equil_steps, 0); get_keyval (conf, "lambdaSchedule", lambda_schedule, lambda_schedule); if (lambda_schedule.size()) { // There is one more lambda-point than stages target_nstages = lambda_schedule.size() - 1; } } else { b_chg_force_k = false; } if (b_chg_centers || b_chg_force_k) { get_keyval (conf, "targetNumSteps", target_nsteps, 0); if (!target_nsteps) cvm::fatal_error ("Error: targetNumSteps must be non-zero.\n"); if (get_keyval (conf, "targetNumStages", target_nstages, target_nstages) && lambda_schedule.size()) { cvm::fatal_error ("Error: targetNumStages and lambdaSchedule are incompatible.\n"); } if (target_nstages) { // This means that either numStages of lambdaSchedule has been provided stage = 0; restraint_FE = 0.0; } if (get_keyval (conf, "targetForceExponent", force_k_exp, 1.0)) { if (! b_chg_force_k) cvm::log ("Warning: not changing force constant: targetForceExponent will be ignored\n"); if (force_k_exp < 1.0) cvm::log ("Warning: for all practical purposes, targetForceExponent should be 1.0 or greater.\n"); } } get_keyval (conf, "outputCenters", b_output_centers, false); get_keyval (conf, "outputAccumulatedWork", b_output_acc_work, false); acc_work = 0.0; if (cvm::debug()) cvm::log ("Done initializing a new harmonic restraint bias.\n"); } colvarbias_harmonic::~colvarbias_harmonic () { if (cvm::n_harm_biases > 0) cvm::n_harm_biases -= 1; } void colvarbias_harmonic::change_configuration (std::string const &conf) { get_keyval (conf, "forceConstant", force_k, force_k); if (get_keyval (conf, "centers", colvar_centers, colvar_centers)) { for (size_t i = 0; i < colvars.size(); i++) { colvar_centers[i].apply_constraints(); colvar_centers_raw[i] = colvar_centers[i]; } } } cvm::real colvarbias_harmonic::energy_difference (std::string const &conf) { std::vector alt_colvar_centers; cvm::real alt_force_k; cvm::real alt_bias_energy = 0.0; get_keyval (conf, "forceConstant", alt_force_k, force_k); alt_colvar_centers.resize (colvars.size()); for (size_t i = 0; i < colvars.size(); i++) { alt_colvar_centers[i].type (colvars[i]->type()); } if (get_keyval (conf, "centers", alt_colvar_centers, colvar_centers)) { for (size_t i = 0; i < colvars.size(); i++) { colvar_centers[i].apply_constraints(); } } for (size_t i = 0; i < colvars.size(); i++) { alt_bias_energy += 0.5 * alt_force_k / (colvars[i]->width * colvars[i]->width) * colvars[i]->dist2 (colvars[i]->value(), alt_colvar_centers[i]); } return alt_bias_energy - bias_energy; } cvm::real colvarbias_harmonic::update() { bias_energy = 0.0; if (cvm::debug()) cvm::log ("Updating the harmonic bias \""+this->name+"\".\n"); // Setup first stage of staged variable force constant calculation if (b_chg_force_k && target_nstages && cvm::step_absolute() == 0) { cvm::real lambda; if (lambda_schedule.size()) { lambda = lambda_schedule[0]; } else { lambda = 0.0; } force_k = starting_force_k + (target_force_k - starting_force_k) * std::pow (lambda, force_k_exp); cvm::log ("Harmonic restraint " + this->name + ", stage " + cvm::to_str(stage) + " : lambda = " + cvm::to_str(lambda)); cvm::log ("Setting force constant to " + cvm::to_str (force_k)); } if (b_chg_centers) { if (!centers_incr.size()) { // if this is the first calculation, calculate the advancement // at each simulation step (or stage, if applicable) // (take current stage into account: it can be non-zero // if we are restarting a staged calculation) centers_incr.resize (colvars.size()); for (size_t i = 0; i < colvars.size(); i++) { centers_incr[i].type (colvars[i]->type()); centers_incr[i] = (target_centers[i] - colvar_centers_raw[i]) / cvm::real ( target_nstages ? (target_nstages - stage) : (target_nsteps - cvm::step_absolute())); } if (cvm::debug()) cvm::log ("Center increment for the harmonic bias \""+ this->name+"\": "+cvm::to_str (centers_incr)+" at stage "+cvm::to_str (stage)+ ".\n"); } if (target_nstages) { if ((cvm::step_relative() > 0) && (cvm::step_absolute() % target_nsteps) == 0 && stage < target_nstages) { for (size_t i = 0; i < colvars.size(); i++) { colvar_centers_raw[i] += centers_incr[i]; colvar_centers[i] = colvar_centers_raw[i]; colvars[i]->wrap(colvar_centers[i]); colvar_centers[i].apply_constraints(); } stage++; cvm::log ("Moving restraint stage " + cvm::to_str(stage) + " : setting centers to " + cvm::to_str (colvar_centers) + " at step " + cvm::to_str (cvm::step_absolute())); } } else if ((cvm::step_relative() > 0) && (cvm::step_absolute() <= target_nsteps)) { // move the restraint centers in the direction of the targets // (slow growth) for (size_t i = 0; i < colvars.size(); i++) { colvar_centers_raw[i] += centers_incr[i]; colvar_centers[i] = colvar_centers_raw[i]; colvars[i]->wrap(colvar_centers[i]); colvar_centers[i].apply_constraints(); } } if (cvm::debug()) cvm::log ("Current centers for the harmonic bias \""+ this->name+"\": "+cvm::to_str (colvar_centers)+".\n"); } if (b_chg_force_k) { // Coupling parameter, between 0 and 1 cvm::real lambda; if (target_nstages) { // TI calculation: estimate free energy derivative // need current lambda if (lambda_schedule.size()) { lambda = lambda_schedule[stage]; } else { lambda = cvm::real(stage) / cvm::real(target_nstages); } if (target_equil_steps == 0 || cvm::step_absolute() % target_nsteps >= target_equil_steps) { // Start averaging after equilibration period, if requested // Square distance normalized by square colvar width cvm::real dist_sq = 0.0; for (size_t i = 0; i < colvars.size(); i++) { dist_sq += colvars[i]->dist2 (colvars[i]->value(), colvar_centers[i]) / (colvars[i]->width * colvars[i]->width); } restraint_FE += 0.5 * force_k_exp * std::pow(lambda, force_k_exp - 1.0) * (target_force_k - starting_force_k) * dist_sq; } // Finish current stage... if (cvm::step_absolute() % target_nsteps == 0 && cvm::step_absolute() > 0) { cvm::log ("Lambda= " + cvm::to_str (lambda) + " dA/dLambda= " + cvm::to_str (restraint_FE / cvm::real(target_nsteps - target_equil_steps))); // ...and move on to the next one if (stage < target_nstages) { restraint_FE = 0.0; stage++; if (lambda_schedule.size()) { lambda = lambda_schedule[stage]; } else { lambda = cvm::real(stage) / cvm::real(target_nstages); } force_k = starting_force_k + (target_force_k - starting_force_k) * std::pow (lambda, force_k_exp); cvm::log ("Harmonic restraint " + this->name + ", stage " + cvm::to_str(stage) + " : lambda = " + cvm::to_str(lambda)); cvm::log ("Setting force constant to " + cvm::to_str (force_k)); } } } else if (cvm::step_absolute() <= target_nsteps) { // update force constant (slow growth) lambda = cvm::real(cvm::step_absolute()) / cvm::real(target_nsteps); force_k = starting_force_k + (target_force_k - starting_force_k) * std::pow (lambda, force_k_exp); } } if (cvm::debug()) cvm::log ("Done updating the harmonic bias \""+this->name+"\".\n"); // Force and energy calculation for (size_t i = 0; i < colvars.size(); i++) { colvar_forces[i] = (-0.5) * force_k / (colvars[i]->width * colvars[i]->width) * colvars[i]->dist2_lgrad (colvars[i]->value(), colvar_centers[i]); bias_energy += 0.5 * force_k / (colvars[i]->width * colvars[i]->width) * colvars[i]->dist2(colvars[i]->value(), colvar_centers[i]); if (cvm::debug()) cvm::log ("dist_grad["+cvm::to_str (i)+ "] = "+cvm::to_str (colvars[i]->dist2_lgrad (colvars[i]->value(), colvar_centers[i]))+"\n"); } if (b_output_acc_work) { if ((cvm::step_relative() > 0) || (cvm::step_absolute() == 0)) { for (size_t i = 0; i < colvars.size(); i++) { // project forces on the calculated increments at this step acc_work += colvar_forces[i] * centers_incr[i]; } } } if (cvm::debug()) cvm::log ("Current forces for the harmonic bias \""+ this->name+"\": "+cvm::to_str (colvar_forces)+".\n"); return bias_energy; } std::istream & colvarbias_harmonic::read_restart (std::istream &is) { size_t const start_pos = is.tellg(); cvm::log ("Restarting harmonic bias \""+ this->name+"\".\n"); std::string key, brace, conf; if ( !(is >> key) || !(key == "harmonic") || !(is >> brace) || !(brace == "{") || !(is >> colvarparse::read_block ("configuration", conf)) ) { cvm::log ("Error: in reading restart configuration for harmonic bias \""+ this->name+"\" at position "+ cvm::to_str (is.tellg())+" in stream.\n"); is.clear(); is.seekg (start_pos, std::ios::beg); is.setstate (std::ios::failbit); return is; } // int id = -1; std::string name = ""; // if ( ( (colvarparse::get_keyval (conf, "id", id, -1, colvarparse::parse_silent)) && // (id != this->id) ) || if ( (colvarparse::get_keyval (conf, "name", name, std::string (""), colvarparse::parse_silent)) && (name != this->name) ) cvm::fatal_error ("Error: in the restart file, the " "\"harmonic\" block has a wrong name\n"); // if ( (id == -1) && (name == "") ) { if (name.size() == 0) { cvm::fatal_error ("Error: \"harmonic\" block in the restart file " "has no identifiers.\n"); } if (b_chg_centers) { // cvm::log ("Reading the updated restraint centers from the restart.\n"); if (!get_keyval (conf, "centers", colvar_centers)) cvm::fatal_error ("Error: restraint centers are missing from the restart.\n"); if (!get_keyval (conf, "centers_raw", colvar_centers_raw)) cvm::fatal_error ("Error: \"raw\" restraint centers are missing from the restart.\n"); } if (b_chg_force_k) { // cvm::log ("Reading the updated force constant from the restart.\n"); if (!get_keyval (conf, "forceConstant", force_k)) cvm::fatal_error ("Error: force constant is missing from the restart.\n"); } if (target_nstages) { // cvm::log ("Reading current stage from the restart.\n"); if (!get_keyval (conf, "stage", stage)) cvm::fatal_error ("Error: current stage is missing from the restart.\n"); } if (b_output_acc_work) { if (!get_keyval (conf, "accumulatedWork", acc_work)) cvm::fatal_error ("Error: accumulatedWork is missing from the restart.\n"); } is >> brace; if (brace != "}") { cvm::fatal_error ("Error: corrupt restart information for harmonic bias \""+ this->name+"\": no matching brace at position "+ cvm::to_str (is.tellg())+" in the restart file.\n"); is.setstate (std::ios::failbit); } return is; } std::ostream & colvarbias_harmonic::write_restart (std::ostream &os) { os << "harmonic {\n" << " configuration {\n" // << " id " << this->id << "\n" << " name " << this->name << "\n"; if (b_chg_centers) { os << " centers "; for (size_t i = 0; i < colvars.size(); i++) { os << " " << colvar_centers[i]; } os << "\n"; os << " centers_raw "; for (size_t i = 0; i < colvars.size(); i++) { os << " " << colvar_centers_raw[i]; } os << "\n"; } if (b_chg_force_k) { os << " forceConstant " << std::setprecision (cvm::en_prec) << std::setw (cvm::en_width) << force_k << "\n"; } if (target_nstages) { os << " stage " << std::setw (cvm::it_width) << stage << "\n"; } if (b_output_acc_work) { os << " accumulatedWork " << acc_work << "\n"; } os << " }\n" << "}\n\n"; return os; } std::ostream & colvarbias_harmonic::write_traj_label (std::ostream &os) { os << " "; if (b_output_energy) os << " E_" << cvm::wrap_string (this->name, cvm::en_width-2); if (b_output_centers) for (size_t i = 0; i < colvars.size(); i++) { size_t const this_cv_width = (colvars[i]->value()).output_width (cvm::cv_width); os << " x0_" << cvm::wrap_string (colvars[i]->name, this_cv_width-3); } if (b_output_acc_work) os << " W_" << cvm::wrap_string (this->name, cvm::en_width-2); return os; } std::ostream & colvarbias_harmonic::write_traj (std::ostream &os) { os << " "; if (b_output_energy) os << " " << std::setprecision (cvm::en_prec) << std::setw (cvm::en_width) << bias_energy; if (b_output_centers) for (size_t i = 0; i < colvars.size(); i++) { os << " " << std::setprecision (cvm::cv_prec) << std::setw (cvm::cv_width) << colvar_centers[i]; } if (b_output_acc_work) os << " " << std::setprecision (cvm::en_prec) << std::setw (cvm::en_width) << acc_work; return os; }